-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_results_mean_std_testWithCompleteData_noisePerc.py
180 lines (166 loc) · 14.9 KB
/
get_results_mean_std_testWithCompleteData_noisePerc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import json
import numpy as np
# Use this script if the model was trained with complete data but you wish to test it with another set of test data,
# in our case incomplete data.
# root_name = '/media/ceslea/DATA/EmbraceBERT-results-backup/'
root_name = './'
# dataname, model, epoch, bs, tts_stt_type = ["askubuntu", "embracebert_frozenbert", 30, 4, 'gtts_google']
if root_name == './':
root_name += 'results/test_with_complete_results/'
MODEL_ROOT = [
#"{}",
#"{}withatt",
#"{}withattclsprojection",
#"{}withprojection",
#"{}withprojectionatt",
#"embrace{}_attention_p_multinomial",
#"embrace{}_attention_p_attention_clsquery_weights",
#"embrace{}_projection_p_multinomial",
#"embrace{}_projection_p_attention_clsquery_weights",
#"embrace{}concatatt_attention_p_multinomial",
#"embrace{}concatatt_attention_p_attention_clsquery_weights",
#"embrace{}concatatt_projection_p_multinomial",
#"embrace{}concatatt_projection_p_attention_clsquery_weights",
#"embrace{}withkeyvaluequery_attention_p_multinomial",
#"embrace{}withkeyvaluequery_attention_p_attention_clsquery_weights",
#"embrace{}withkeyvaluequery_projection_p_multinomial",
#"embrace{}withkeyvaluequery_projection_p_attention_clsquery_weights",
"embrace{}withkeyvaluequeryconcatatt_attention_p_multinomial",
"embrace{}withkeyvaluequeryconcatatt_attention_p_attention_clsquery_weights",
"embrace{}withkeyvaluequeryconcatatt_projection_p_multinomial",
"embrace{}withkeyvaluequeryconcatatt_projection_p_attention_clsquery_weights",
]
MODEL_BERT = []
for M in MODEL_ROOT:
print(M)
MODEL_BERT.append(M.format('bert'))
#MODEL_ROBERTA = []
#for M in MODEL_ROOT:
# MODEL_ROBERTA.append(M.format('roberta'))
MODEL_NAME = {"bert": " BERT-bs{} ",
"bert_withDropout0.1": " BERT-bs{}+Dropout0.1 ",
"bert_withDropout0.3": " BERT-bs{}+Dropout0.3 ",
"bertwithatt": " BERTwithAtt-bs{} ",
"bertwithprojection": " BERTwithProjection-bs{} ",
"bertwithprojectionatt": " BERTwithProjectionAtt-bs{} ",
"bertwithattprojection": " BERTwithAttProjection-bs{} ",
"bertwithattclsprojection": " BERTwithAttClsProjection-bs{} ",
"bert_frozen": " FrozenBERT-bs{}-ep100 ",
"bert_frozen_withDropout0.1": " FrozenBERT-bs{}-ep100+Dropout0.1 ",
"bert_frozen_withDropout0.3": " FrozenBERT-bs{}-ep100+Dropout0.3 ",
"embracebert_attention_p_multinomial": " EmbraceBERT-bs{} ",
"embracebert_attention_p_attention_clsquery_weights": " EmbraceBERT-bs{}-p_attclsqw ",
"embracebert_withDropout0.1": " EmbraceBERT-bs{}+Dropout0.1 ",
"embracebert_withDropout0.3": " EmbraceBERT-bs{}+Dropout0.3 ",
"embracebert_projection_p_multinomial": " EmbraceBERTwithProj-bs{} ",
"embracebert_projection_p_attention_clsquery_weights":" EmbraceBERTwithProj-bs{}-p_attclsqw ",
"embracebert_condensed": " CondensedEmbraceBERT-bs{} ",
"embracebert_condensed_withDropout0.1": " CondensedEmbraceBERT-bs{}+Dropout0.1 ",
"embracebert_condensed_withDropout0.3": " CondensedEmbraceBERT-bs{}+Dropout0.3 ",
"embracebert_frozenbert": " FrozenEBERT-bs{}-ep100 ",
"embracebert_frozenbert_withDropout0.1": " FrozenEBERT-bs{}-ep100+Dropout0.1 ",
"embracebert_frozenbert_withDropout0.3": " FrozenEBERT-bs{}-ep100+Dropout0.3 ",
"embracebert_frozenbert_condensed": " FrozenCEBERT-bs{}-ep100 ",
"embracebert_frozenbert_condensed_withDropout0.1": " FrozenCEBERT-bs{}-ep100+Dropout0.1 ",
"embracebert_frozenbert_condensed_withDropout0.3": " FrozenCEBERT-bs{}-ep100+Dropout0.3 ",
"embracebert_p_selfattention": " EmbraceBERT-bs{}-p_selfatt ",
"embracebert_p_selfattention_condensed": " CondensedEmbraceBERT-bs{}-p_selfatt ",
"embracebert_p_selfattention_pytorch": " EmbraceBERT-bs{}-p_selfatt_pytorch ",
"embracebert_p_multiheadattention": " EmbraceBERT-bs{}-p_multiheadatt ",
"embracebert_p_multihead_bertattention": " EmbraceBERT-bs{}-p_multihead_bertatt ",
"embracebert_p_multihead_bertselfattention": " EmbraceBERT-bs{}-p_multihead_bertselfatt",
"embracebert_p_multihead_bertselfattention_in_p": " EmbraceBERT-bs{}-p_multihead_bertselfatt_in_p",
"embracebert_p_attention_clsquery": " EmbraceBERT-bs{}-p_att_clsquery ",
"embracebertwithkeyvaluequery_attention_p_multinomial": " EmbraceBERT-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracebertwithkeyvaluequery_attention_p_attention_clsquery_weights": " EmbraceBERT-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracebertwithkeyvaluequery_projection_p_multinomial": " EmbraceBERTwithProj-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracebertwithkeyvaluequery_projection_p_attention_clsquery_weights": " EmbraceBERTwithProj-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracebertconcatatt_attention_p_multinomial": " EBERTconcatAtt-bs{} ",
"embracebertconcatatt_attention_p_attention_clsquery_weights": " EBERTconcatAtt-bs{}-p_attclsqw ",
"embracebertconcatatt_projection_p_multinomial": " EBERTconcatAttwithProj-bs{} ",
"embracebertconcatatt_projection_p_attention_clsquery_weights": " EBERTconcatAttwithProj-bs{}-p_attclsqw",
"embracebertwithkeyvaluequeryconcatatt_attention_p_multinomial": " EmbraceBERTconcatatt-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracebertwithkeyvaluequeryconcatatt_attention_p_attention_clsquery_weights": " EmbraceBERTconcatatt-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracebertwithkeyvaluequeryconcatatt_projection_p_multinomial": " EmbraceBERTconcatattWithProj-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracebertwithkeyvaluequeryconcatatt_projection_p_attention_clsquery_weights": " EmbraceBERTconcatattWithProj-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracebert_with_branches_sharedWeightsAll": " EmbraceBERT-bs{}+Branches ",
"embracebert_with_branches_sharedWeightsAll_withDropout0.1": " EmbraceBERT-bs{}+Branches+Dropout0.1 ",
"embracebert_with_branches_sharedWeightsAll_withDropout0.3": " EmbraceBERT-bs{}+Branches+Dropout0.3 ",
"embracebert_with_branches_condensed_sharedWeightsAll": " CondensedEmbraceBERT-bs{}+Branches ",
"embracebert_with_branches_condensed_sharedWeightsAll_withDropout0.1": " CondensedEmbraceBERT-bs{}+Branches+Dropout0.1 ",
"embracebert_with_branches_condensed_sharedWeightsAll_withDropout0.3": " CondensedEmbraceBERT-bs{}+Branches+Dropout0.3 ",
"embracebert_with_branches_frozenbert_sharedWeightsAll": " FrozenEmbraceBERT-bs{}+Branches ",
"embracebert_with_branches_frozenbert_sharedWeightsAll_withDropout0.1": " FrozenEmbraceBERT-bs{}+Branches+Dropout0.1 ",
"embracebert_with_branches_frozenbert_sharedWeightsAll_withDropout0.3": " FrozenEmbraceBERT-bs{}+Branches+Dropout0.3 ",
"embracebert_with_branches_frozenbert_condensed_sharedWeightsAll": " FrozenCEBERT-bs{}+Branches ",
"embracebert_with_branches_frozenbert_condensed_sharedWeightsAll_withDropout0.1": " FrozenCEBERT-bs{}+Branches+Dropout0.1 ",
"embracebert_with_branches_frozenbert_condensed_sharedWeightsAll_withDropout0.3": " FrozenCEBERT-bs{}+Branches+Dropout0.3 ",
"roberta": " RoBERTa-bs{} ",
"robertawithatt": " RoBERTawithAtt-bs{} ",
"robertawithprojection": " RoBERTawithProjection-bs{} ",
"robertawithprojectionatt": " RoBERTawithProjectionAtt-bs{} ",
"robertawithattclsprojection": " RoBERTawithAttClsProjection-bs{} ",
"embraceroberta": " EmbraceRoBERTa-bs{} ",
"embraceroberta_attention_p_multinomial": " EmbraceRoBERTa-bs{} ",
"embraceroberta_attention_p_attention_clsquery_weights": " EmbraceRoBERTa-bs{}-p_att_clsquery_weights ",
"embraceroberta_projection_p_multinomial": " EmbraceRoBERTawithProj-bs{} ",
"embraceroberta_projection_p_attention_clsquery_weights": " EmbraceRoBERTawithProj-bs{}-p_attclsqw ",
"embracerobertawithkeyvaluequery_attention_p_multinomial": " EmbraceRoBERTa-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracerobertawithkeyvaluequery_attention_p_attention_clsquery_weights": " EmbraceRoBERTa-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracerobertawithkeyvaluequery_projection_p_multinomial": " EmbraceRoBERTawithProj-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracerobertawithkeyvaluequery_projection_p_attention_clsquery_weights": " EmbraceRoBERTawithProj-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracerobertaconcatatt_attention_p_multinomial": " ERoBERTaconcatAtt-bs8 ",
"embracerobertaconcatatt_attention_p_attention_clsquery_weights": " ERoBERTaTconcatAtt-bs8_attclsqw ",
"embracerobertaconcatatt_projection_p_multinomial": " ERoBERTaconcatAttwithProj-bs8 ",
"embracerobertaconcatatt_projection_p_attention_clsquery_weights": " ERoBERTaconcatAttwithProj-bs8_attclsqw ",
"embracerobertawithkeyvaluequeryconcatatt_attention_p_multinomial": " ERoBERTaconcatatt-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracerobertawithkeyvaluequeryconcatatt_attention_p_attention_clsquery_weights": " ERoBERTaconcatatt-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
"embracerobertawithkeyvaluequeryconcatatt_projection_p_multinomial": " ERoBERTaconcatattWithProj-bs{}-p_multiheadatt_bertKeyValQuery ",
"embracerobertawithkeyvaluequeryconcatatt_projection_p_attention_clsquery_weights": " ERoBERTaconcatattWithProj-bs{}-p_multiheadatt_bertKeyValQuery_attclsqw ",
}
for dataname in ["chatbot"]: #["askubuntu", "chatbot", "webapplications", "snips"]:
if dataname == "snips":
bs_array = [48]
epoch_array = [100]
else:
bs_array = [8] #, 8] #, 16]
epoch_array = [100]
for epoch in epoch_array:
print("- {} - ep{}".format(dataname.upper(), epoch))
for noise_perc in [20, 40, 60, 80]:
for tts in ["macsay"]: # ["gtts", "macsay"]:
for stt in ["sphinx", "witai"]: # ["google", "sphinx", "witai"]:
tts_stt_type = tts + "_" + stt
print(tts_stt_type + '-' + str(noise_perc))
#for bs in bs_array:
# print("-----------------------------------------")
#for model_type in [MODEL_BERT, MODEL_ROBERTA]:
for model_type in [MODEL_BERT]:
for bs in bs_array:
print("| ------------------------------------- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |")
for model in model_type:
model_name = MODEL_NAME[model]
# print("{dataname} {model} - ep{epoch} bs{bs}".format(dataname=dataname, model=model, epoch=epoch, bs=bs))
prefix = "stterror_{}".format(noise_perc)
root_dir = '{root_name}{model}/{dataname}/{prefix}/{tts_stt_type}/{dataname}_ep{epoch}_bs{bs}_'. \
format(root_name=root_name, model=model, dataname=dataname, prefix=prefix,
epoch=epoch, bs=bs, tts_stt_type=tts_stt_type)
f1_micro_str_all = ""
for perc in [0.1]:
f1_micro_arr = []
if bs == 4:
f1_micro_str_all += "|{} ".format(model_name.format(bs))
else:
f1_micro_str_all += "|{}".format(model_name.format(bs))
for i in range(1, 10 + 1):
tmp_dir = "{}seed{}/".format(root_dir, i)
#tmp_dir += "eval_results_{}.json".format(tts_stt_type)
tmp_dir += "eval_results.json"
# Load json file
with open(tmp_dir, 'r') as f:
datastore = json.load(f)
f1_score = datastore['f1']
f1_micro_arr.append(f1_score)
f1_micro_str_all += "|{:.2f}".format(f1_score*100)
f1_micro_str_all += "|{:.2f}|{:.2f}|".format(np.mean(f1_micro_arr)*100, np.std(f1_micro_arr)*100)
print(f1_micro_str_all)