-
Notifications
You must be signed in to change notification settings - Fork 2
Model and their names
Mars edited this page Nov 24, 2021
·
2 revisions
Model | Name in Code | Bases | Paper |
---|---|---|---|
RST-CNN | mnist_ses_scalar_28_rot_8 | E | Deformation Robust Roto-Scale-Translation Equivariant CNNs |
RST-CNN | mnist_ses_scalar_28_rot_8 | G | Deformation Robust Roto-Scale-Translation Equivariant CNNs |
RST-CNN+ | mnist_ses_scalar_28_rot_8_interrot_4 | E | Deformation Robust Roto-Scale-Translation Equivariant CNNs |
RST-CNN+ | mnist_ses_scalar_28_rot_8_interrot_4 | G | Deformation Robust Roto-Scale-Translation Equivariant CNNs |
SFCNN | mnist_res_scalar_28_rot_8 | I | Learning Steerable Filters for Rotation Equivariant CNNs. |
SFCNN+ | mnist_res_scalar_28_rot_8_interrot_4 | I | Learning Steerable Filters for Rotation Equivariant CNNs. |
RDCF | mnist_res_scalar_28_rot_8 | D1 | RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks |
RDCF+ | mnist_res_scalar_28_rot_8_interrot_4 | D1 | RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks |
SEVF | mnist_sevf_scalar_28 | \ | Scale equivariance in CNNs with vector fields |
SESN | mnist_ses_scalar_28_rot_1 | C | Scale-Equivariant Steerable Networks |
SDCF | mnist_ses_scalar_28_rot_1 | G | Scale-Equivariant Neural Networks with Decomposed Convolutional Filters |
Note here
- Basis A: Hermite Gaussian one scale
- Basis B: Hermite Gaussian multi scale
- Basis C: Hermite Gaussian rotation and multi-scale
- Basis D: Fourier Bessel one scale
- Basis E: Fourier Bessel rotation and multi-scale
- Basis F: Fourier Bessel Gaussian rotation and multi-scale
- Basis G: SL rotation and multi-scale