-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocesses.yaml
929 lines (915 loc) · 32.6 KB
/
processes.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
author: 'ben lipkowitz'
license: 'GPL2+'
urls:
- 'http://heybryan.org/mediawiki/index.php/Skdb'
- 'http://fennetic.net/git/gitweb.cgi?p=skdb.git;a=blob_plain;f=materials.yaml'
- 'git://fennetic.net/git/skdb.git/'
source: manufacturing processes reference guide, 1993 first edition. todd, allen, and alting.
template: !process
name:
classification:
mechanism:
geometry:
tolerance:
surface finish:
consumables:
functionality:
parameters:
safety:
abrasive jet: !process #eventually this will be something like skdb.Shaping.Reducing.Mechanical
name: abrasive jet machining
mechanism: compressed air accelerates abrasive particles toward the workpiece
functionality:
- finishing
- hole drilling
- deburring
- prismatic geometry
- tapered geometry
machinability: !which workpiece material, machinability
removal rate:
typical: 0.003.. 0.0007in/min #what exactly does this refer to?
feasible: 0.0001 .. 0.002in/min
geometry:
primitive: cone #!geometry #what angle?
path:
- parallel to workpiece face
tolerance:
typical: +-0.005in
feasible: +-0.001in
surface finish: #arithmetic average
typical: 6..48 microinch
feasible: 4..64 microinch
consumables:
nozzle: &orifice
tungsten carbide:
life: 12..30hr
sapphire:
#this should work, but it doesn't?
# life: !range
# min: 300hr
abrasive: 1..25g/min
#this really should be something like "compressed air: 4.5..7cfm"
power: 0.5..4 hp #power = cfm * pressure is dependent on pressure and diameter
parameters: #"factors affecting process results"
pressure: 25..130psi
orifice diameter: 0.005..0.05in
nozzle distance: 0.03..0.6 in
nozzle angle:
workpiece size:
typical: 5..50 in^2
feasible: 0.2 .. 100 in^2 #workpiece size is only limited by enclosure
workpiece material: &machinability
#on a scale of 0 to 4 representing process quality and/or ease of use
#need to figure out a new unit 'stars' representing this
ceramic:
machinability: 2.25 .. 3.75 stars
germanium:
machinability: 2.2 .. 3.5 stars
glass:
machinability: 2.2 .. 3.8 stars
mica:
machinability: 1.9 .. 3.4 stars
silicon:
machinability: 2.3 .. 3.8 stars
steel:
machinability: 1.1 .. 2.5 stars
aluminum:
machinability: 0.4 .. 1.6 stars
abrasive material:
aluminum oxide:
functionality:
- cutting
- hard materials
diameter: 10 .. 50 microns
silicon carbide:
functionality:
- fast cutting
- hard materials
- ceramics
diameter: 25 .. 50 microns
glass beads:
functionality:
- deburring
- light cleaning #how do i parameterize this with dimensional units?
- polishing
diameter: 0.025 .. 0.05in
sodium bicarbonate:
functionality:
- cleaning
calcium compounds:
functionality:
- light cleaning
- light etching
magnesium compounds:
functionality:
- light cleaning
- light etching
safety:
- airborne dust
- flying particles
- abrasion
- toxic dust
arbor milling: !process
name: arbor milling #really this is just endmilling supported at both ends and you can stack cutters
classification: process, shaping, mass-reducing, mechanical, reducing, multi-point, milling
mechanism: rotating toothed cutter supported axially at both ends is fed into the workpiece at a controlled rate
geometry: #!geometry
primitive: revolute #like a candlestick. used to calculate swept volume of tool path
path:
- path perpendicular to axis
- axis parallel to workpiece opposite face
#cutters can be ganged.. where do i put this?
length:
typical: 0.2..5in
feasible: &width_of_cut 0.03..20in
radius:
typical: 1.5 .. 10in
tolerance:
typical: +-0.005
feasible: +-0.001
surface finish:
typical: 64..200 microinch
feasible: 32..500 microinch
unit power: !which workpiece material, unit power
consumables:
power: !formula unit power * removal rate
tool:
life: !which tool material, life
lubricant: !which lubrication, lubricant #how long does each lubricant last? where do i get this info?
functionality:
- roughing
- prismatic geometry
- !which tool material, functionality #hmm
machinability: !which workpiece material, machinability
effects:
- surface stress
- untempered martensitic layer 0.001in in heat treated alloy steels #blargh
parameters:
depth of cut:
typical: 0.05 .. 0.25in
feasible: 0.004 .. 1in
width of cut: *width_of_cut
rotation direction vs feed: #surely there's a name for this
#clockwise rotating cutter by default; a counterclockwise cutter reverses this
- conventional
- climb
feed per tooth: 0.005 .. 0.010in/tooth
surface speed: 30 .. 500 feet/min #see materials
lubrication: !which workpiece material, lubrication
workpiece hardness:
typical:
max: Rockwell C25 #joy~~ how about some real units
rigidity: #this includes the machine, workpiece, clamps, and tool bit rigidity
static: #mostly affects deflection or absolute uncompensated accuracy
dynamic: #affects maximum cutting rate vs surface finish, tool life, etc
tool geometry: !which workpiece material, tool geometry
tooth count:
typical: 10 .. 20 teeth/rev #i just made up these values
feasible: 1 .. 200 teeth/rev #ditto
tool sharpness: #units??
tool material:
high speed steel:
functionality:
- special geometry
- low production
carbide insert:
functionality:
- high production
ceramic insert:
functionality:
- high speed machining
- high production
- uninterrupted cuts
diamond insert:
functionality:
- high surface finish
- low tolerance
- nonferrous materials
workpiece material:
aluminum:
tool geometry: #!multipoint_rotating_cutter
teeth: !which tooth count #blarg
axial rake: 12 .. 25 deg
radial rake: 10 .. 20 deg
axial relief: 5 .. 7 deg
radial relief: 5 .. 11 deg
unit power: 0.3 hp/in^3
hardness:
typical: 70 .. 125 brinell
feasible: 30 .. 150 brinell
machinability:
typical: 2.6 .. 3.2 stars
feasible: 2.2 .. 3.7stars
lubricant:
- none
- mineral oil
- fatty oil
brass:
tool geometry:
axial rake: 12 .. 25 deg
radial rake: 10 .. 20 deg
axial relief: 5 .. 7 deg
radial relief: 5 .. 11 deg
unit power: 0.6 .. 1.0 hp/in^3
hardness:
typical: 60..100brinell
feasible: 50..240 brinell
machinability:
feasible: 2.1 .. 3.6 stars
typical: 2.6 .. 3.1 stars
lubricant:
- mineral oil
- specialty fluid #wtf??
cast iron:
tool geometry:
axial rake: 10 .. 12 deg
radial rake: 10 .. 20 deg
axial relief: 2 .. 4 deg
radial relief: 3 .. 7 deg
unit power: 0.6 .. 1.1 hp/in^3
hardness:
typical: 250..320 brinell
feasible: 110 .. 320brinell
machinability:
feasible: 2 .. 3 stars
typical: 2.3 .. 2.6 stars
lubricant:
- soluble oil
- chemical oil
- synthetic oil
- none
mild steel:
tool geometry:
axial rake: 10 .. 15 deg
radial rake: 10 .. 15 deg
axial relief: 3 .. 5 deg
radial relief: 4 .. 8 deg
unit power: 1.1.. 2.1 hp/in^3
hardness:
typical: 275..325 brinell
feasible: 85..560 brinell
machinability:
feasible: 2.1 .. 3
typical: 2.3 .. 2.6
lubricant:
- chemical oil
- syntheic oil
- soluble oil
stainless steel:
tool geometry:
axial rake: 10 .. 12 deg
radial rake: 5 .. 10 deg
axial relief: 3 .. 5 deg
radial relief: 4 .. 8 deg
unit power: 1.4 .. 1.5hp/in^3
hardness:
typical: 275..325 brinell
feasible: 135..430 brinell
machinability:
feasible: 0.3 .. 2.4 stars
typical: 0.8 .. 1.5 stars
lubricant:
- sulfurized mineral oil
- fatty soluble oil
- chemical oil
- synthetic oil
plastic:
tool geometry:
axial rake: 18 deg
radial rake: 15 deg
axial relief: 6 deg
radial relief: 8 deg
hardness:
unit power: 0.05hp/in^3
machinability:
feasible: 2 .. 3.8 stars
typical: 2.5 .. 3.2 stars
lubricant:
- mineral oil
- soluble oil
- cold air
- none
safety:
- rotating parts #if this were a high speed rotating part we'd calculate the energy, but the danger is mostly from being crushed by the torque
- hot chips #todo: calculate the energy in a typical hot chip
- sharp chips
- toxic fluids
band filing: !process
#there really wasn't much data on this
name: band filing
classification: shaping, mass reducing, mechanical, reducing, multi-point, filing
mechanism: a prismatic multipoint cutter mounted on a metal belt is fed into the work
geometry:
primitive: prism
path:
- under 90 degrees to previous segment #direction of cutting really depends on the tool bit geometry
- axis perpendicular to workpiece opposite face
tolerance:
surface finish: "fine"
functionality:
- irregular prismatic geometry
- deburring
- squaring edges
- finishing
consumables:
tool:
life:
parameters:
tool geometry: #this needs work, should conform to !multipoint_cutter eventually
- flat (square)
- triangle
- half oval
- half cylinder
tooth count: 10..24 teeth/in
safety:
- particulate material
- moving belt
band sawing: !process
name: band sawing
classification: shaping, mass-reducing, mechanical, reducing, multipoint, sawing
mechanism: a moving flexible tensioned metal loop with teeth is fed into the workpiece at a controlled rate
geometry:
primitive: rectangle
path:
- roll = 90 deg
- perpendicular to rectangle or tangent arc
- geometry must extend above and below workpiece
- !formula arc radius > something * blade width
tolerance:
typical: 0.05 .. 0.1 in
feasible: 0.02 .. 0.3 in
surface finish:
consumables:
tool:
lubricant:
functionality:
- narrow kerf
- single angle cuts
- !which tooth shape, functionality
- !which blade width, functionality
parameters:
teeth in contact with work: #!range #FIXME
min: 2 teeth #bleh
tooth count: 4..28 teeth/in
tooth shape:
precision:
functionality:
- finishing
buttress:
functionality:
- roughing
- parting
- high chip load
claw:
functionality:
- chip clearance
- fast cuts
blade width:
thin:
functionality:
- irregular prismatic shape
- curved cuts
thick:
functionality:
- straight cuts
- parting
blade thickness:
blade tension:
lubricant:
- none
- soluble oil
- cutting oil
safety:
- moving belt
- moving blade
- particulate material
internal broaching: &internal_broaching !process
name: internal broaching
classification: shaping, mass-reducing, mechanical, reducing, multi-point, broaching
mechanism: a tapered cutter is fed into a hole in one pass
geometry:
primitive: prismatic or helical
path:
- axis parallel to workpiece face
- helix angle < 20 deg #yah i made this up.. isnt a tap just a helical broach?
tolerance:
typical: +-0.002in
feasible: +-0.0005
surface finish:
typical: 16..63 microinch
feasible: 8..125 microinch
consumables:
tool:
power: !formula drive efficiency * hardness / chip load #see graph, normalize so that 80% * 100brinnel/(0.01in/tooth) = 0.25 hp/(in^3/min) ... or something like that
requirements: #do i even need this?
- pre-existing hole
functionality:
- heat treated parts
- low production
- roughing
- finishing
- internal prismatic geometry
- low angle internal helical geometry
- keyways
- !which tool material, functionality
machinability: !which workpiece material, machinability
effects:
- welding tool and workpiece
- work hardening
parameters:
diameter:
typical: 0.125 .. 6 in
feasible: 0.04 .. 12 in
surface speed: !which material, surface speed
rigidity:
alignment:
lubricant: !which workpiece material, lubricant
feed per tooth: !which workpiece material, feed per tooth
tool geometry: !which workpiece material, tool geometry
hardness: !which workpiece material, hardness
tool material:
high speed steel:
functionality:
- low production
- irregular internal prismatic geometry
- irregular internal helical geometry
workpiece material:
aluminum:
feed per tooth: 0.005..0.007in/tooth
lubricant:
- kerosene
- mineral oil
- sulfurized mineral oil
tool geometry:
rake: 10 .. 15 deg
clearance: 1 .. 3 deg
hardness: 30 .. 150 brinell
machinability:
typical: 2.8 .. 3.2 stars
feasible: 2.2 .. 3.7 stars
brass:
feed per tooth: 0.004..0.005in/tooth
lubricant:
- water
- soluble oil
- mineral lard oil
tool geometry:
rake: -5 .. 5 deg
clearance: 1 .. 3 deg
hardness: 40 .. 200 brinell
machinability:
typical: 2.7 .. 3.2 stars
feasible: 2.1 .. 3.6 stars
cast iron:
feed per tooth: 0.002..0.005in/tooth
lubricant:
- water
- soluble oil
- sulfurized mineral oil
tool geometry:
rake: 6..15 deg
clearance: 2 .. 3 deg
hardness:
typical: 120 .. 320 brinell
feasible: 110 .. 400 brinell
machinability:
feasible: 2 .. 3 stars
typical: 2.3 .. 2.5 stars
mild steel:
feed per tooth: 0.003..0.004in/tooth
lubricant:
- water
- soluble oil
- sulfurized mineral oil
- mineral lard oil
tool geometry:
rake: 15..20 deg
clearance: 1..3 deg
hardness:
typical: 100..275 brinell
feasible: 85 .. 375 brinell
machinability:
feasible: 2.1 .. 3 stars
typical: 2.3 .. 2.5 stars
stainless:
feed per tooth: 0.002..0.003in/tooth
lubricant:
- water
- soluble oil
- sulfurized mineral oil
- mineral lard oil
tool geometry:
clearance: 0.5 .. 3 deg
rake: 8 .. 18 deg
hardness:
typical: 135 .. 375 brinell
feasible: 135 .. 440 brinell
machinability:
feasible: 0.3 .. 2.4 stars
typical: 0.7 .. 1.5 stars
plastics:
machinability:
feasible: 2 .. 3.7 stars
typical: 2.5 .. 3.2 stars
safety:
- reciprocating cutter
- hot chips
- sharp chips
- toxic fluids
- flying broken cutter
external broaching: !process
name: external broaching
classification: shaping, mass-reducing, mechanical, reducing, multi-point, broaching
mechanism: a tapered cutter is fed across a workpiece in one pass
similar: *internal_broaching
functionality:
- heat treated parts
- low production
- roughing
- finishing
- prismatic geometry
- low angle external helical geometry
- gear teeth
- irregular prismatic geometry
- slot cuts
- !which tool material, functionality
parameters:
width:
typical: 0.075 .. 10in
feasible: 0.02 .. 20in
tool material:
high speed steel:
functionality:
- low production
- irregular prismatic geometry
carbide insert:
functionality:
- high production
- prismatic geometry
- high hardness
superfinishing: !process #somehow i think there isnt quite enough info here
name: superfinishing
classification: shaping, mass-reducing, mechanical, reducing, abrasive #is this right?
mechanism: abrasive surface and oil act as hydrodynamic bearing; surface asperities contact abrasive and are cut
geometry:
primitive: cylinder or sphere or cone or plane
path:
- colinear with workpiece face axis #superfinishing just makes a cylinder "more cylindrical" etc
tolerance: -0.0002 .. -0.0008in
effect: removes smeared surface layer
surface finish:
typical: 2 .. 8 microinch
feasible: 0 .. 30 microinch
rate: 10..40 in^2/min
consumables:
abrasive:
functionality:
- high precision
- wear resistance
- bearing surfaces
parameters:
periodicity: #how the heck do i represent this
surface speed: 50 .. 60 feet/min
pressure: 10 .. 40 psi
lubricant:
- oil
- water
workpiece surface finish: 30..200 microinch #i made this up.. chrysler recommends rough grinding prior to surface finishing
safety:
- abrasive fluid
- rotating parts
gas cutting: !process
name: gas flame cutting
classification: shaping, mass-reducing, thermal, torch cutting, gas cutting
mechanism: ferrous workpiece is heated and then oxidized. gas flow then blows the liquid metal out of the cut
geometry:
primitive: cylinder
path:
- parallel to workpiece face
diameter: 1/16 .. 1/4 in #kerf
tolerance:
typical: +- 1/8 in
feasible: +- 1/32 in
surface finish:
typical: 250..1000 microinches
feasible: 100..1100 microinches
consumables:
fuel consumption: !which fuel, fuel consumption
oxygen consumption: !which fuel, oxygen consumption
torch tip:
functionality:
- straight cuts
- parting
- roughing
- irregular prismatic geometry
- angular cuts
- ferrous materials > 3/8 inch thickness
effects:
- distortion
- annealing
- microcracks
- residual stress
- surface embrittlement
- oxidation
heat affected zone: #no mention?
parameters:
workpiece thickness:
typical: 0.125 .. 12in
feasible: 0.05 .. 60in #wow
oxidizer pressure: 20 .. 50 psi
fuel pressure: 3 .. 7 psi
feed rate: !which fuel, feed rate
temperature: tempf(1400)..tempf(1600)
tip style: !which fuel, tip style
fuel:
acetylene: #how do i say acetylene is the preferred fuel? least heat dispersion
tip style:
- one-piece straight tip
- one-piece divergent tip
feed rate: 2.6 .. 20 in/min
removal rate: 120 in^3/hr
fuel consumption: 25 ft^3/hr
oxygen consumption: 155 ft^3/hr
propane:
tip style: two-piece recessed tip
feed rate: 2.5 .. 30 in/min #typo?
removal rate: 130 in^3/hr
fuel consumption: 11 ft^3/hr
oxygen consumption: 167 ft^3/hr
natural gas:
tip style: two-piece recessed tip
feed rate: 3 .. 20 in/min
removal rate: 130 in^3/hr
fuel consumption: 20 ft^3/hr
oxygen consumption: 167 ft^3/hr
MAPP gas:
tip style:
feed rate: 14 .. 30 in/min
removal rate: 90 in^3/hr
fuel consumption: 15 ft^3/hr
oxygen consumption: 120 ft^3/hr
workpiece material:
carbon steel:
machinability:
typical: 3.3..3.7 stars
feasible: 3..4 stars
cast iron:
machinability:
feasible: 0.5..1.5 stars
typical: 0.8..1.2 stars
galvanized steel:
machinability:
feasible: 0 .. 1 stars
typical: 0.3 .. 0.6 stars
free machining steel:
machinability:
feasible: 0 .. 1 stars
typical: 0.3 .. 0.6 stars
safety:
- hot parts
- toxic fumes
- sparks
- ultraviolet radiation
- flammable gases
- compressed gases
- smoke
- open flame
- explosive mixture
laser cutting: !process
name: laser beam cutting
classification: shaping, mass-reducing, thermal, high energy beam machining
mechanism: focused coherent light heats workpiece to melting or vaporization, then shielding gas blows the melted material out of the cut
geometry:
primitive: hyperboloid
path:
- parallel to workpiece face
diameter: !which beam, diameter #hmmm. beam has no choices, i.e. this varies continuously
tolerance:
typical: +- 0.001in
feasible: +- 0.0005in
surface finish:
typical: 125..250 microinch
feasible: 100 .. 300 microinch
consumables:
cutting gas:
power: !which workpiece material, power
functionality:
- drilling
- straight cuts
- irregular prismatic geometry
- !which lasing material, functionality
effects:
- hardening
- annealing
- change in grain size
parameters:
beam:
focal length: 1.5 .. 3 in #this varies significantly with material thickness
diameter:
typical: 0.004 .. 0.0125 in
feasible: 0.0002 .. 0.2 in
workpiece thickness:
feasible: 0.004 .. 6 inch
typical: 0.02 .. 0.5 inch
cutting gas:
oxygen:
compressed air:
nitrogen:
argon:
feed rate: !which workpiece material, feed rate #over typical thickness range, feed rate
workpiece reflectivity:
workpiece thermal conductivity:
workpiece material:
aluminum:
power: 1000 .. 10000 W
feed rate: 30 .. 800 in/min
machinability:
typical: 2.9..3.5 stars
feasible: 0.2 .. 3.8 stars
stainless:
power: 250 .. 1000 W
feed rate: 20 .. 750 in/min
machinability:
typical: 2.6..3.2 stars
feasible: 0.6 .. 3.6 stars
mild steel:
power: 400 .. 500 W
feed rate: 40 .. 177 in/min
machinability:
feasible: 2.5 .. 3.8 stars
typical: 2.9 .. 3.3 stars
wood:
power: 50 .. 650W
feed rate: #45 .. 180 in/min #this is wrong, 180 refers to 0.25" thickness, paper must be faster
machinability:
feasible: 2.3 .. 3.9 stars
typical: 2.9 .. 3.5 stars
titanium:
power: 210 .. 250 W
feed rate: 40 .. 300 in/min
plastic:
feed rate: #25 .. 60 in/min #this is also wrong
power: 50 .. 100W #i made this up
machinability:
feasible: 2.1 .. 3.6 stars
typical: 2.6 .. 3.3 stars
lasing material:
CO2:
functionality:
- scribing
- engraving
Nd:
functionality:
- high energy pulse
- low repetition speed #(1 KHz)#huh?
Nd-YAG:
functionality:
- very high energy pulse
- engraving
- trimming #wtf does this mean
safety:
- coherent infrared radiation
- hot parts
- toxic fumes
- dust
- compressed gases
mig: !process
name: MIG welding
classification: shaping, joining, thermal, welding, electric arc, gas metal
mechanism: a wire electrode surrounded by inert gas is heated to melting by an electric arc passing through it
geometry:
primitive: sphere
post-operation: fillet edges
diameter: !formula electrode rate*pi*(electrode diameter)^2/traverse rate #TODO unit check this formula
tolerance:
surface finish:
typical: 250..1000 microinches
feasible: 100..1100 microinches
consumables:
gas: !which shielding gas, flow rate
electrode: !which weld geometry, feed rate
power: !formula current * voltage
functionality: !which shielding gas, functionality
effects:
- hardening
- reduced fatigue strength
- shrinkage
- annealing
- warpage
- bad appearance
- cracks
- porosity
- reduced corrosion resistance
weldability: !which workpiece material, weldability
parameters:
workpiece thickness:
feasible: 0.02..2.5in
typical: 0.125..1in
electrode material:
#usually similar to workpiece material
filler material:
manganese silicon:
shielding gas: carbon dioxide
aluminum:
shielding gas: helium or argon
steel:
shielding gas: carbon dioxide
powder core:
functionality:
- specialized welding applications
oxidizer:
functionality:
- rusty surfaces
- semikilled steel
- rimmed steel #what's this?
workpiece material:
mild steel:
weldability:
feasible: 2.4..3.7 stars
typical: 2.8..3.3 stars
cast iron:
weldability:
feasible: 1.3..3.1 stars
typical: 2.1..2.5 stars
stainless:
weldability:
feasible: 2.3..3.7 stars
typical: 2.7..3.2 stars
aluminum:
weldability:
feasible: 2.8..3.9 stars
typical: 3.2..3.7 stars
copper:
weldability:
feasible: 2.0..3.6 stars
typical: 2.6..2.95stars
magnesium:
weldability:
feasible: 2.6..3.6 stars
typical: 3.2..3.5 stars
titanium:
weldability:
feasible: 1.2..3.1 stars
typical: 1.9..2.5 stars
shielding gas: #gases can be mixed.. how to represent this?
argon:
functionality:
- lower voltage
- high quality
- easy starting
- stable arc
helium:
functionality:
- high speed
- small heat affected zone
carbon dioxide:
functionality:
- good penetration
- low cost
- high speed
weld geometry: #hmmm. i know it's in a book, but this is all wrong
lap:
traverse rate: 60ipm
electrode rate: 234ipm
electrode diameter: 0.0625in
current: 380A
butt:
traverse rate: 7ipm
electrode rate: 400ipm
electrode diameter: 0.045in
current: 275A
tee:
traverse rate: 16ipm
electrode rate: 300ipm
electrode diameter: 0.045in
current: 200A
edge:
traverse rate:
electrode rate:
electrode diameter:
corner:
traverse rate: 10ipm
electrode rate: 30..160ipm
electrode diameter: 0.030in
current: 80..85A
circumferential corner:
traverse rate: 45ipm
electrode rate: 500ipm
electrode diameter: 0.045in
current: 280..300A
circumferential modified butt: #wtf is this
traverse rate: 46.6ipm
electrode rate: 340..380ipm
electrode diameter: 0.030
current: 170..190A
current:
voltage:
traverse rate: !which weld geometry, traverse rate
electrode rate: !which weld geometry, electrode rate
electrode diameter: !which weld geometry, electrode diameter
safety:
- UV radiation
- hot parts
- smoke
- sparks
- metal fumes