-
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathsetup.py
63 lines (50 loc) · 2.19 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import io
import os
import re
import setuptools
def get_long_description():
base_dir = os.path.abspath(os.path.dirname(__file__))
with io.open(os.path.join(base_dir, "README.md"), encoding="utf-8") as f:
return f.read()
def get_requirements():
with open("requirements.txt") as f:
return f.read().splitlines()
def get_version():
current_dir = os.path.abspath(os.path.dirname(__file__))
version_file = os.path.join(current_dir, "video_transformers", "__init__.py")
with io.open(version_file, encoding="utf-8") as f:
return re.search(r'^__version__ = [\'"]([^\'"]*)[\'"]', f.read(), re.M).group(1)
_DEV_REQUIREMENTS = ["black==21.7b0", "flake8==3.9.2", "isort==5.9.2"]
_TEST_REQUIREMENTS = ["onnx", "onnxruntime"]
extras = {"test": [_DEV_REQUIREMENTS + _TEST_REQUIREMENTS], "dev": _DEV_REQUIREMENTS}
setuptools.setup(
name="video-transformers",
version=get_version(),
author="fcakyon",
license="MIT",
description="Easiest way of fine-tuning HuggingFace video classification models.",
long_description=get_long_description(),
long_description_content_type="text/markdown",
url="https://github.com/fcakyon/video-transformers",
packages=setuptools.find_packages(exclude=["examples", "tests"]),
python_requires=">=3.7",
install_requires=get_requirements(),
extras_require=extras,
include_package_data=True,
classifiers=[
"Development Status :: 5 - Production/Stable",
"Operating System :: OS Independent",
"Intended Audience :: Developers",
"Intended Audience :: Science/Research",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Education",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
keywords="machine-learning, deep-learning, ml, pytorch, vision, loss, video-classification, transformers, accelerate, evaluate, huggingface",
)