-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreactor.py
529 lines (463 loc) · 16.9 KB
/
reactor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import dataclasses
import datetime
import logging
import itertools
from typing import Any, Callable, Dict, Iterable, List, Set, Tuple
from eve import market, services, world
REACTIONS = [
46166, # Caesarium Cadmide Reaction Formula
46167, # Carbon Polymers Reaction Formula
46168, # Ceramic Powder Reaction Formula
46169, # Crystallite Alloy Reaction Formula
46170, # Dysporite Reaction Formula
46171, # Fernite Alloy Reaction Formula
46172, # Ferrofluid Reaction Formula
46173, # Fluxed Condensates Reaction Formula
46174, # Hexite Reaction Formula
46175, # Hyperflurite Reaction Formula
46176, # Neo Mercurite Reaction Formula
46177, # Platinum Technite Reaction Formula
46178, # Rolled Tungsten Alloy Reaction Formula
46179, # Silicon Diborite Reaction Formula
46180, # Solerium Reaction Formula
46181, # Sulfuric Acid Reaction Formula
46182, # Titanium Chromide Reaction Formula
46183, # Vanadium Hafnite Reaction Formula
46184, # Prometium Reaction Formula
46185, # Thulium Hafnite Reaction Formula
46186, # Promethium Mercurite Reaction Formula
46204, # Titanium Carbide Reaction Formula
46205, # Crystalline Carbonide Reaction Formula
46206, # Fernite Carbide Reaction Formula
46207, # Tungsten Carbide Reaction Formula
46208, # Sylramic Fibers Reaction Formula
46209, # Fulleride Reaction Formula
46210, # Phenolic Composites Reaction Formula
46211, # Nanotransistors Reaction Formula
46212, # Hypersynaptic Fibers Reaction Formula
46213, # Ferrogel Reaction Formula
46214, # Fermionic Condensates Reaction Formula
46215, # Plasmonic Metamaterials Reaction Formula
46216, # Terahertz Metamaterials Reaction Formula
46217, # Photonic Metamaterials Reaction Formula
46218, # Nonlinear Metamaterials Reaction Formula
]
# Local materials:
# =========================================
# Neodymium (64)
# Thulium (64)
# Caesium (32)
# Chromium (16)
# Cadmium (16)
# Tungsten/Titanium/Scandium (8)
# Evaporite/Silicates/Hydrocarbons (4)
# When NSH moves out:
# Scandium
# Platinum
# Promethium
ItemPriceSource = Callable[[world.ItemType], market.ItemPrice]
ItemPriceHistoryDict = Dict[world.ItemType, List[market.HistoricalItemPrice]]
SYSTEM_COST_FACTOR = 0.03
SHIPMENT_COST_PER_M3 = 200
@dataclasses.dataclass
class PricedFormula:
name: str
formula: world.Formula
daily_volume_in_runs: float
profit: float
input_cost: float
job_cost: float
prices: Dict[world.ItemType, market.ItemPrice]
@property
def runs_per_day(self):
return 24.0 * 60 * 60 / self.formula.time
@property
def profit_per_day(self):
return self.runs_per_day * self.profit
@property
def profit_ratio(self):
return self.profit / self.input_cost
def print(self):
print(
f"{self.name} --- {self.profit_per_day:,.0f}/day at "
f"{self.profit_ratio * 100:.1f}%"
)
f = self.formula
p = self.prices[f.output.item_type]
amt = p.low_price * f.output.quantity
print(
f"{amt:15,.0f} {f.output.quantity}x {f.output.item_type.name}; "
f"volume (runs): {self.daily_volume_in_runs:,.0f}, "
f"runtime {f.time}s"
)
input_amt = 0.0
input_m3 = 0.0
for inp in f.inputs:
p = self.prices[inp.item_type]
amt = -p.high_price * inp.quantity
input_amt += amt
input_m3 += inp.item_type.volume_m3 * inp.quantity
print(
f"{amt:15,.0f} {inp.quantity}x {inp.item_type.name}; "
f"volume (runs): {p.daily_trade_volume / inp.quantity:,.0f}"
)
print(f"{-self.job_cost:15,.0f} job cost")
output_m3 = f.output.quantity * f.output.item_type.volume_m3
ship_cost = -(input_m3 + output_m3) * SHIPMENT_COST_PER_M3
print(
f"{ship_cost:15,.0f} shipment cost "
f"for {input_m3+output_m3:,.0f} m3"
)
input_m3 *= self.runs_per_day
output_m3 *= self.runs_per_day
print(
f"= {self.profit:13,.0f} per run; "
f"per day ISK: {self.profit_per_day:,.0f}; "
f"m3: import {input_m3:,.0f}, export {output_m3:,.0f}"
)
SALES_TAX_DISCOUNT = 0.97
def price_formula(
ips: ItemPriceSource, name: str, f: world.Formula, me=1.0
) -> PricedFormula:
prices = {}
p = ips(f.output.item_type)
prices[f.output.item_type] = p
daily_volume_in_runs = p.daily_trade_volume / f.output.quantity
amt = p.low_price * f.output.quantity
total = amt * SALES_TAX_DISCOUNT
total_m3 = f.output.quantity * f.output.item_type.volume_m3
input_amt = 0.0
for inp in f.inputs:
p = ips(inp.item_type)
prices[inp.item_type] = p
qty = max(1.0, me * inp.quantity)
input_amt += p.high_price * qty
total_m3 += inp.quantity * inp.item_type.volume_m3
job_cost = input_amt * SYSTEM_COST_FACTOR
for i in f.intermediates:
p = ips(i.item_type)
prices[i.item_type] = p
job_cost += SYSTEM_COST_FACTOR * (p.high_price * i.quantity)
total -= input_amt
total -= total_m3 * SHIPMENT_COST_PER_M3
total -= job_cost
return PricedFormula(
name, f, daily_volume_in_runs, total, input_amt, job_cost, prices
)
def fold_formula_with(
f: world.Formula, to_fold: Dict[int, world.Formula]
) -> Tuple[str, world.Formula]:
if not to_fold:
return f.output.item_type.name, f
new_items: List[world.ItemQuantity] = []
intermediates: List[world.ItemQuantity] = []
total_time = f.time
for it in f.inputs:
if it.item_type.id not in to_fold:
new_items.append(it)
continue
sub_f = to_fold[it.item_type.id]
intermediates.append(sub_f.output)
multiplier = float(it.quantity) / sub_f.output.quantity
total_time += multiplier * sub_f.time
for s_it in sub_f.inputs:
new_items.append(
world.ItemQuantity(s_it.item_type, s_it.quantity * multiplier)
)
names = [it.output.item_type.name for it in to_fold.values()]
sub_names = "/".join(sorted(names))
name = f"{f.output.item_type.name}[{sub_names}]"
return name, world.Formula(
f.blueprint,
total_time,
f.output,
new_items,
intermediates=intermediates,
)
def powerset(iterable):
s = list(iterable)
return itertools.chain.from_iterable(
itertools.combinations(s, r) for r in range(len(s) + 1)
)
def fold_formula(
f: world.Formula, others: Dict[int, world.Formula], only_full_folds=False
) -> List[Tuple[str, world.Formula]]:
foldable = [
others[it.item_type.id] for it in f.inputs if it.item_type.id in others
]
r = []
if only_full_folds:
subsets = [foldable]
else:
subsets = powerset(foldable)
for subset in subsets:
# for subset in [foldable]:
to_fold = {it.output.item_type.id: it for it in subset}
r.append(fold_formula_with(f, to_fold))
return r
def date_to_datetime(d: datetime.date) -> datetime.datetime:
return datetime.datetime(d.year, d.month, d.day)
def print_industry_tree(w: world.World, padding: int, it: world.ItemType):
bp = w.find_blueprint(it)
if not bp:
return
f = w.find_formula(bp)
print(" " * padding + f"{f.output.quantity}x {it.name} ({bp.group})")
for inp in f.inputs:
print(" " * padding + f"- {inp.quantity}x {inp.item_type.name}")
for inp in f.inputs:
print_industry_tree(w, padding + 2, inp.item_type)
def fold_all_formulas(
formulas: List[world.Formula], only_full_folds=False
) -> List[Tuple[str, world.Formula]]:
formulas_by_output = {f.output.item_type.id: f for f in formulas}
r = []
for f in formulas:
r.extend(fold_formula(f, formulas_by_output, only_full_folds))
return r
def get_all_items(formulas: List[world.Formula]) -> Set[world.ItemType]:
r: Set[world.ItemType] = set()
for f in formulas:
r.add(f.output.item_type)
r.update(it.item_type for it in f.inputs)
return r
def get_all_price_histories(
ipc: market.ItemPriceCache, items: Iterable[world.ItemType]
) -> ItemPriceHistoryDict:
return {it: ipc.get_price_history(it) for it in items}
def get_price_snapshot(
hist: ItemPriceHistoryDict, d: datetime.date
) -> ItemPriceSource:
r = {}
time_radius = datetime.timedelta(days=0)
min_date = d - time_radius
max_date = d + time_radius
for it, prices in hist.items():
r[it] = get_mean_price(
it.id,
[p for p in prices if p.date >= min_date and p.date <= max_date],
)
return lambda it: r[it]
def get_mean_price(
type_id, slice: List[market.HistoricalItemPrice]
) -> market.ItemPrice:
volume_sum = sum(p.volume for p in slice)
price = sum(p.volume * p.average for p in slice) / volume_sum
return market.ItemPrice(
type_id=type_id,
last_refreshed=date_to_datetime(slice[-1].date),
daily_trade_volume=(volume_sum / len(slice)),
low_price=(price * 0.96), # Assumes 4% overhead of sell orders
high_price=(price * 1.02), # Assumes 2% overhead of buy orders
)
def get_common_dates(prices: ItemPriceHistoryDict) -> List[datetime.date]:
r = None
for price_list in prices.values():
if r is None:
r = set(p.date for p in price_list)
else:
r = r.intersection(p.date for p in price_list)
if r is None:
return []
return sorted(r)
def profit_key(xs: List[float]) -> Any:
return (sum(bool(x > 0.1) for x in xs), sum(xs))
def history():
logging.basicConfig(level=logging.INFO)
serv = services.Services()
w = world.World(serv.reference_db)
ipc = market.ItemPriceCache(serv.store_db, serv.api)
formulas = [w.find_formula(w.find_item_type(id)) for id in REACTIONS]
prices = get_all_price_histories(ipc, get_all_items(formulas))
all_formulas = fold_all_formulas(formulas, only_full_folds=True)
dates = get_common_dates(prices)
# for it, p in prices.items():
# print(
# it.name
# + ", "
# + ", ".join(f"{dp.average}" for dp in p if dp.date in dates)
# )
# return
results = {name: [] for name, _ in all_formulas}
for d in dates:
price_slice = get_price_snapshot(prices, d)
for name, f in all_formulas:
pf = price_formula(price_slice, name, f)
results[name].append(pf.profit_ratio)
results = [(name, profits) for name, profits in results.items()]
results.sort(key=lambda x: profit_key(x[1]), reverse=True)
for name, r in results:
print(name + ", " + ", ".join(f"{x:.3f}" for x in r))
def reactor():
logging.basicConfig(level=logging.INFO)
serv = services.Services()
w = world.World(serv.reference_db)
ipc = market.ItemPriceCache(serv.store_db, serv.api)
formulas = [w.find_formula(w.find_item_type(id)) for id in REACTIONS]
formulas_by_output = {f.output.item_type.id: f for f in formulas}
priced = []
for f in formulas:
folded = [
price_formula(lambda it: ipc.find_item_price(it), name, f)
# price_formula(
# lambda it: get_mean_price(
# it.id, ipc.get_price_history(it)[-5:]
# ),
# name,
# f,
# )
for name, f in fold_formula(f, formulas_by_output)
]
priced.extend(folded)
priced.sort(key=lambda p: (p.profit / p.input_cost), reverse=True)
for p in priced:
p.print()
print()
def get_formula_for_item_name(w: world.World, item: str) -> world.Formula:
return w.find_formula(w.find_blueprint(w.find_item_type_by_name(item)))
def name_to_formula(w: world.World, name: str) -> world.Formula:
main_name = name.split("[")[0].strip()
main_formula = get_formula_for_item_name(w, main_name)
if main_name == name:
return main_formula
mats_names = name[len(main_name) :].strip("[]").split("/")
mats = [get_formula_for_item_name(w, m) for m in mats_names]
return fold_formula_with(
main_formula, {m.output.item_type.id: m for m in mats}
)[1]
def print_price_history(ph: List[market.HistoricalItemPrice]):
ph = ph[-15:]
if ph[-1].volume > 1e6:
print(" v:" + " ".join(f"{d.volume/1000:8,.0f}K" for d in ph))
else:
print(" v:" + " ".join(f"{d.volume:9,.0f}" for d in ph))
print("=" * (10 * 15 + 3))
print(" h:" + " ".join(f"{d.highest:9,.0f}" for d in ph))
print(" a:" + " ".join(f"{d.average:9,.0f}" for d in ph))
print(" l:" + " ".join(f"{d.lowest:9,.0f}" for d in ph))
def shopper():
logging.basicConfig(level=logging.INFO)
serv = services.Services()
w = world.World(serv.reference_db)
ipc = market.ItemPriceCache(serv.store_db, serv.api)
# name = "Sylramic Fibers[Hexite]"
# name = "Sylramic Fibers[Hexite/Ceramic Powder]"
# name = "Ceramic Powder"
# name = "Sylramic Fibers[Ceramic Powder]"
# name = "Phenolic Composites"
# name = "Neo Mercurite"
# name = "Phenolic Composites[Caesarium Cadmide/Silicon Diborite/Vanadium Hafnite]"
# name = "Fullerides[Carbon Polymers]"
name = "Fullerides[Platinum Technite/Carbon Polymers]"
# name = "Fullerides[Platinum Technite]"
f = name_to_formula(w, name)
print(f.output.item_type.name)
print_price_history(ipc.get_price_history(f.output.item_type))
print()
qty = 2000
total = 0.0
total_m3 = 0.0
for i in f.inputs:
p = ipc.find_item_price(i.item_type)
amt = qty * i.quantity * p.high_price
total += amt
total_m3 += qty * i.quantity * i.item_type.volume_m3
print(
f"{i.item_type.name} x{i.quantity * qty} "
f"buy @{p.high_price:,.0f} {amt:,.0f}"
)
print_price_history(ipc.get_price_history(i.item_type))
print()
print(f"Total: {total:,.0f} ISK, {total_m3:,.0f} m3")
print("Multibuy:")
for i in f.inputs:
print(f"{qty * i.quantity:.0f}x {i.item_type.name}")
print()
def test():
logging.basicConfig(level=logging.INFO)
serv = services.Services()
w = world.World(serv.reference_db)
ipc = market.ItemPriceCache(serv.store_db, serv.api)
# Direct list of items
items = [
# Weapons
"Rapid Light Missile Launcher II",
"720mm Howitzer Artillery II",
"Heavy Missile Launcher II",
"Heavy Assault Missile Launcher II",
"Mega Pulse Laser II",
"425mm AutoCannon II",
"Small Focused Beam Laser II",
# Drones
"Warrior II",
"Acolyte II",
"Hornet II",
"Hobgoblin II",
"Hammerhead II",
"Infiltrator II",
"Valkyrie II",
"Ogre II",
# Tank
"Large Shield Extender II",
"Medium Shield Extender II",
"Multispectrum Shield Hardener II",
"Large Shield Booster II",
"Nanofiber Internal Structure II",
"Damage Control II",
"Assault Damage Control II",
"Medium Armor Repairer II",
"Multispectrum Energized Membrane II",
"Shield Power Relay II",
# Eng. and misc
"Co-Processor II",
"Warp Disruptor II",
"Stasis Webifier II",
"Warp Scrambler II",
"Medium Capacitor Booster II",
# Damage mods
"Drone Damage Amplifier II",
"Heat Sink II",
"Gyrostabilizer II",
"Ballistic Control System II",
"Magnetic Field Stabilizer II",
"Tracking Enhancer II",
# Rigs
"Medium Core Defense Field Purger I",
"Medium Core Defense Field Purger II",
"Medium Core Defense Field Extender II",
"Medium EM Shield Reinforcer II",
"Medium Thermal Shield Reinforcer II",
"Medium Hydraulic Bay Thrusters II",
"Medium Rocket Fuel Cache Partition II",
"Medium Energy Locus Coordinator II",
"Medium Hyperspatial Velocity Optimizer II",
"Small Energy Locus Coordinator II",
# Fuel
"Helium Fuel Block",
"Hydrogen Fuel Block",
"Nitrogen Fuel Block",
"Oxygen Fuel Block",
]
# Formulas for items assuming T2 BP exists
# fs = [get_formula_for_item_name(w, item) for item in items]
# All formulas that use a material
mat = w.find_item_type_by_name("Sylramic Fibers")
fs = w.find_material_uses(mat)
fs = [f for f in fs if not f.output.item_type.is_capital]
# Invention cost (not really correct)
# fs = [
# w.find_invention_formula(w.find_blueprint(w.find_item_type_by_name(n)))
# for n in items
# ]
# fs = [f for f in fs if f]
priced = [
price_formula(
lambda it: ipc.find_item_price(it), f.output.item_type.name, f
)
for f in fs
]
priced.sort(key=lambda f: (f.profit / f.input_cost), reverse=True)
for p in priced:
p.print()
if __name__ == "__main__":
history()