-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_and_score.py
421 lines (360 loc) · 12.5 KB
/
train_and_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# ############################################################################
#
# This file contains the functions to run the hyperparameter search.
#
# Important functions in this file are
#
# run_hyperparameter_search : Run the search
# create_train_and_score_graph: Create the graph and pass it to the training
# : and scoring function
# train_and_score_graph : Train, score and save a graph
#
import numpy as np
import pandas as pd
import tensorflow as tf
import time
import pprint
from logging_setup import *
from create_graph import create_graph
def run_hyperparameter_search(
grid_param_search,
training_config,
default_data_config,
results_filename):
"""Run the hyperparameter search based on the grid_param_search"""
def expand_param_search(param_search, graph_config={}):
"""Create a list of all permutations of the param_search"""
# If we have no more param_search then lets return this value
if not param_search:
return graph_config.copy()
key = list(param_search.keys())[0]
results = []
for value in param_search[key]:
graph_config[key] = value
param_search_next = param_search.copy()
del param_search_next[key]
result = expand_param_search(param_search_next, graph_config)
if type(result) is list:
results = results + result
else:
results.append(result)
return results
log('*' * 40)
log('Runing parameter search')
log('*' * 40)
#
# Create all the permutations of grid configurations
#
graph_config_combinations = expand_param_search(grid_param_search)
log("Running %d combinations" % len(graph_config_combinations))
#
# Shuffle the graph combinations, to keep things interesting
#
np.random.shuffle(graph_config_combinations)
#
# Check expected running time
#
run_mins = len(graph_config_combinations) * training_config['mins']
log("Expected runtime:%dd %dh %dm" % (
run_mins // (60 * 24),
(run_mins // 60) % 24,
run_mins % 60))
#
# Load the results file if exists
#
if os.path.isfile(results_filename):
df_results = pd.read_csv(results_filename)
else:
df_results = None
#
# Loop through our graph_config permutations
#
for i, graph_config in enumerate(graph_config_combinations):
#
# Check if we have run with this configuration already, and skip if we have
#
if df_results is not None:
# Turn our graph_config into a series and search for it in the pandas frame
df_tmp = pd.Series(graph_config)
if 'layers' in df_tmp:
df_tmp['layers'] = str(df_tmp['layers'])
found_row = df_results.loc[(df_results[list(graph_config)] == df_tmp).all(axis=1)]
if not found_row.empty:
log("Already run %s" % pprint.pformat(graph_config))
continue
#
# Run the configuration through create, train and score
#
result = create_train_and_score_graph(
graph_config,
training_config,
default_data_config)
#
# Record results
#
result.update(graph_config)
if df_results is None:
df_results = pd.DataFrame([result])
else:
df_results = df_results.append(result, ignore_index=True)
#
# output the results to a file after each training so
# we can continue should something break
#
log("Writing results:%s" % results_filename)
df_results.to_csv(results_filename, index=False)
log("Finished:%d/%d" % (i + 1, len(graph_config_combinations)))
log('')
def create_train_and_score_graph(
graph_config,
training_config,
data_config):
"""As it says in the title"""
log("*" * 40)
log("Train and score starting")
log("*" * 40)
#
# Generate the graph
#
graph = create_graph(
training_config,
data_config,
**graph_config)
#
# Train, score and save the graph
#
score = train_and_score_graph(
graph,
data_config,
**training_config)
return score
def train_and_score_graph(
graph,
data_config,
mins=1,
save_model=False,
batch_size=16,
eval_step=100,
valid_step=100,
dry_run=False):
"""Run a full training and scoring cycle on the graph"""
#
# Extract the required variables from the configurations
#
training_shape = str(data_config['image_set'][0].shape)
valid_shape = str(data_config['image_set'][1].shape)
test_shape = str(data_config['image_set'][2].shape)
training_label_shape = str(data_config['label_set'][0].shape)
valid_label_shape = str(data_config['label_set'][1].shape)
test_label_shape = str(data_config['label_set'][2].shape)
#
# Log the parameters
#
params = locals().copy()
del params['data_config']
del params['graph']
log("Run graph params:")
log(pprint.pformat(params))
log('')
#
#
# Helper functions
#
#
def accuracy(predictions, labels):
"""Return the accuracy"""
return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0])
def accuracy_list(num_digits, predictions, labels):
"""Return the average accuracy over many digits"""
result = np.mean([accuracy(predictions[i],
labels[:, i, :])
for i in range(num_digits)])
return result
def run_fetches(
graph,
session,
num_digits,
batch_data,
batch_labels,
fetches):
"""Execute ops listed in feteches with a batch of training data"""
tf_train_dataset = graph.get_tensor_by_name('tf_train_dataset:0')
tf_train_labels = [graph.get_tensor_by_name('tf_train_labels_%d:0' % i) for i in range(num_digits)]
feed_dict = {tf_train_labels[i]: batch_labels[:, i, :] for i in range(num_digits)}
feed_dict[tf_train_dataset] = batch_data
#
# Execute the graph
#
results = session.run(fetches, feed_dict=feed_dict)
return results
def run_and_score_dataset(
graph,
session,
batch_size,
num_digits,
dataset,
labels):
"""Run and score a dataset and labels against our model"""
train_prediction = [graph.get_tensor_by_name('tf_train_prediction_%d:0' % i) for i in range(num_digits)]
# Calculate test accuracy using batches
offset = 0
accuracy_results = []
while offset <= labels.shape[0] - batch_size:
batch_data = dataset[offset:(offset + batch_size), :, :, :]
batch_labels = labels[offset:(offset + batch_size), :]
results = run_fetches(
graph,
session,
num_digits,
batch_data,
batch_labels,
train_prediction)
accuracy = accuracy_list(
num_digits,
results,
batch_labels)
accuracy_results.append(accuracy)
offset += batch_size
# return the average of the tests
return np.mean(accuracy_results)
#
# More variables for use
#
train_dataset, valid_dataset, test_dataset = data_config['image_set']
train_labels, valid_labels, test_labels = data_config['label_set']
img_height, img_width = test_dataset[0].shape[:2]
num_digits, num_labels = test_labels.shape[1:]
#
# The timeout for this training run
#
timeout = mins * 60 # 30 minutes * 60 seconds
#
# Get the required ops from our graph
#
tf_optimizer = graph.get_tensor_by_name('tf_optimizer:0')
tf_loss = graph.get_tensor_by_name('tf_loss:0')
tf_learning_rate = graph.get_tensor_by_name('tf_learning_rate:0')
#
# Initialise varaibles
#
test_accuracy = 0.
valid_accuracy = 0.
train_accuracy = 0.
step = 0
learning_rate = 0.
save_file_id = ''
#
# Dry-run used for testing purposes
#
if dry_run:
log('Dry run only')
else:
#
# Create a session and get cracking
#
with tf.Session(graph=graph) as session:
tf.initialize_all_variables().run()
log('Initialized')
#
# Let's start timing
#
start_time = time.time()
#
# The main training loop, the timer will break the loop
#
while True:
step += 1
#
# Get our training batch
#
offset = (step * batch_size) % (train_labels.shape[0] - batch_size)
batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
batch_labels = train_labels[offset:(offset + batch_size), :]
#
# Execute the ops
#
results = run_fetches(
graph,
session,
num_digits,
batch_data,
batch_labels,
[tf_optimizer, tf_loss])
#
# Calculate the time to see if we should be finished
#
elapsed_time = time.time() - start_time
timeup = elapsed_time >= timeout
#
# Output our scores if required
#
if step > 0 or timeup:
if (step % eval_step == 0 or timeup):
log('Elapsed time(s):%d/%d (%.2f%%)' %
(elapsed_time, timeout, 1.0 * elapsed_time / timeout))
if timeup:
log("\nTIMEUP!")
learning_rate = tf_learning_rate.eval()
log('Learning rate:%.5f' % learning_rate)
log('Minibatch loss at step %d: %f' % (step, results[1]))
# Score training dataset
train_accuracy = run_and_score_dataset(
graph,
session,
batch_size,
num_digits,
batch_data,
batch_labels)
log('Minibatch accuracy: %.1f%%' % train_accuracy)
if (step % valid_step == 0 or timeup):
# Score valid dataset
valid_accuracy = run_and_score_dataset(
graph,
session,
batch_size,
num_digits,
valid_dataset,
valid_labels)
log('Validation accuracy: %.1f%%' % valid_accuracy)
if timeup:
break
#
# We will be outside the loop here
# Score against test dataset
#
test_accuracy = run_and_score_dataset(
graph,
session,
batch_size,
num_digits,
test_dataset,
test_labels)
log('Test accuracy: %.1f%%' % test_accuracy)
#
# Save the model if required
#
if save_model:
if not os.path.exists('save'):
os.makedirs('save')
save_file_id = get_datetime_filename()
log("Saving graph:%s" % save_file_id)
saver = tf.train.Saver()
checkpoint_path = os.path.join('save', save_file_id + '.ckpt')
saver.save(session, checkpoint_path, global_step=0)
tf.train.write_graph(session.graph.as_graph_def(), 'save', save_file_id + '.pb')
log("Finished\n")
#
# Return a nice result set
#
result = {
'test_accuracy': round(test_accuracy / 100., 3),
'valid_accuracy': round(valid_accuracy / 100., 3),
'train_accuracy': round(train_accuracy / 100., 3),
'step': step,
'final_learning_rate': round(learning_rate, 5),
'save_name': save_file_id
}
log("Result:")
log(pprint.pformat(result))
log('')
return result