-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathDTW.hpp
245 lines (230 loc) · 8.05 KB
/
DTW.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
//
// DTW.hpp
//
// Copyright (c) 2019 Charles Jekel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
#include <cstdlib>
#include <vector>
#include <cmath>
#include <algorithm>
#include <stdexcept>
const std::string DTW_VERSION = "0.0.1";
namespace DTW
{
/**
* Compute the p_norm between two 1D c++ vectors.
*
* The p_norm is sometimes referred to as the Minkowski norm. Common
* p_norms include p=2.0 for the euclidean norm, or p=1.0 for the
* manhattan distance. See also
* https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm
*
* @a 1D vector of m size, where m is the number of dimensions.
* @b 1D vector of m size (must be the same size as b).
* @p value of norm to use.
*/
double p_norm (std::vector<double> a, std::vector<double> b, double p) {
double d = 0;
for (int i = 0; i < a.size() ; i++) {
d += std::pow(std::abs(a[i] - b[i]), p);
}
return std::pow(d, 1.0/p);
};
/**
* Compute the DTW distance between two 2D c++ vectors.
*
* The c++ vectors can have different number of data points, but must
* have the same number of dimensions. This will raise
* std::invalid_argument if the dimmensions of a and b are different.
* Here the vectors should be formatted as
* [number_of_data_points][number_of_dimensions]. The DTW distance can
* be computed for any p_norm. See the wiki for more DTW info.
* https://en.wikipedia.org/wiki/Dynamic_time_warping
*
* @a 2D vector of [number_of_data_points][number_of_dimensions].
* @b 2D vector of [number_of_data_points][number_of_dimensions].
* @p value of p_norm to use.
*/
double dtw_distance_only(std::vector<std::vector<double>> a,
std::vector<std::vector<double>> b,
double p)
{
int n = a.size();
int o = b.size();
int a_m = a[0].size();
int b_m = b[0].size();
if (a_m != b_m)
{
throw std::invalid_argument( "a and b must have the same number of dimensions!" );
}
std::vector<std::vector<double> > d(n, std::vector<double> (o, 0.0));
d[0][0] = p_norm(a[0], b[0], p);
for (int i=1; i < n; i++)
{
d[i][0] = d[i-1][0] + p_norm(a[i], b[0], p);
}
for (int i=1; i < o ; i++)
{
d[0][i] = d[0][i-1] + p_norm(a[0], b[i], p);
}
for (int i=1; i < n ; i++)
{
for (int j=1; j < o; j++){
d[i][j] = p_norm(a[i], b[j], p) + std::fmin(std::fmin(d[i-1][j], d[i][j-1]), d[i-1][j-1]);
}
}
return d[n-1][o-1];
};
/**
* Assembles a 2D c++ DTW distance vector.
*
* The DTW distance vector represents the matrix of DTW distances for
* all possible alignments. The c++ vectors must have the same 2D size.
* d.size() == c.size() == number of a data points, where d[0].size ==
* c[0].size() == number of b data points.
*
* @d 2D DTW distance vector of [a data points][b data points].
* @c 2D pairwise distance vector between every a and b data point.
*/
std::vector<std::vector<double> > dtw_vector_assemble(std::vector<std::vector<double>> d,
std::vector<std::vector<double>> c)
{
int n = d.size();
int o = d[0].size();
for (int i=1; i < n; i++)
{
d[i][0] = d[i-1][0] + c[i][0];
}
for (int i=1; i < o ; i++)
{
d[0][i] = d[0][i-1] + c[0][i];
}
for (int i=1; i < n ; i++)
{
for (int j=1; j < o; j++){
d[i][j] = c[i][j] + std::fmin(std::fmin(d[i-1][j], d[i][j-1]), d[i-1][j-1]);
}
}
return d;
};
class DTW {
public:
std::vector<std::vector<double> > a_vector, b_vector;
int a_data, n_dim, b_data;
double p, distance;
std::vector<std::vector<double> > dtw_vector, pairwise_vector;
/**
* Class for Dynamic Time Warping distance between two 2D c++ vectors.
*
* The c++ vectors can have different number of data points, but must
* have the same number of dimensions. This will raise
* std::invalid_argument if the dimmensions of a and b are different.
* Here the vectors should be formatted as
* [number_of_data_points][number_of_dimensions]. The DTW distance can
* be computed for any p_norm. See the wiki for more DTW info.
* https://en.wikipedia.org/wiki/Dynamic_time_warping
*
* @a 2D vector of [number_of_data_points][number_of_dimensions].
* @b 2D vector of [number_of_data_points][number_of_dimensions].
* @p value of p_norm to use.
*
* This class stores the following:
*
* @DTW.distance Computed DTW distance.
* @DTW.pairwise_vector P_norm distance between each a and b data point.
* @DTW.dtw_vector DTW distance matrix.
*
* The class has the following methods:
*
* @DTW.path() Returns a 2D vector of the alignment path between a and b.
*/
DTW (std::vector<std::vector<double> > a, std::vector<std::vector<double> > b, double p) :
a_vector(a), b_vector(b), p(p) {
a_data = a.size();
b_data = b.size();
int a_m = a_vector[0].size();
int b_m = b_vector[0].size();
if (a_m != b_m)
{
throw std::invalid_argument( "a and b must have the same number of dimensions!" );
}
else
{
n_dim = a_m;
}
std::vector<std::vector<double> > c(a_data, std::vector<double> (b_data, 0.0));
for (int i=0; i < a_data; i++){
for (int j=0; j < b_data; j++) {
c[i][j] = p_norm(a_vector[i], b_vector[j], p);
}
}
pairwise_vector = c;
std::vector<std::vector<double> > d(a_data, std::vector<double> (b_data, 0.0));
d[0][0] = pairwise_vector[0][0];
dtw_vector = dtw_vector_assemble(d, pairwise_vector);
distance = dtw_vector[a_data-1][b_data-1];
};
/**
* Returns a 2D vector of the alignment path between a and b.
*
* The DTW path is a 2D integer vector, where [path_length][i] represents
* the i'th data point on curve a, and [path_length][j] represents the j'th
* data point on curve b. The path_length will depend upon the optimal DTW
* alignment.
*/
std::vector<std::vector<int> > path () {
int i = a_data - 1;
int j = b_data - 1;
std::vector<std::vector<int> > my_path = { {i, j} };
while (i > 0 || j > 0) {
if (i == 0)
{
j -= 1;
}
else if (j == 0)
{
i -= 1;
}
else
{
double temp_step = std::fmin(std::fmin(dtw_vector[i-1][j], dtw_vector[i][j-1]),
dtw_vector[i-1][j-1]);
if (temp_step == dtw_vector[i-1][j])
{
i -= 1;
}
else if (temp_step == dtw_vector[i][j-1])
{
j -= 1;
}
else
{
i -= 1;
j -= 1;
}
}
my_path.push_back ({i, j});
}
std::reverse(my_path.begin(), my_path.end());
return my_path;
}
};
}