-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathtrain.py
105 lines (77 loc) · 3.22 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import division
import os,time
import numpy as np
import pdb
import glob
from network import *
import cv2
from prefetch_queue_shuffle import *
import tensorflow as tf
from vgg import *
data_dir = './DRV/'
train_ids = [line.rstrip('\n') for line in open(data_dir+'train_list.txt')]
val_ids = [line.rstrip('\n') for line in open(data_dir+'val_list.txt')]
test_ids = [line.rstrip('\n') for line in open(data_dir+'test_list.txt')]
save_freq = 250
in_image=tf.placeholder(tf.float32,[2,None,None,3])
gt_image=tf.placeholder(tf.float32,[None,None,None,3])
out_image=Unet(in_image)
# convert images to RGB in [0, 255] for pretrained vgg model
vgg_real=build_vgg19(255*gt_image[:,:,:,::-1])
vgg_fake1=build_vgg19(255*out_image[0:1,:,:,::-1],reuse=True)
vgg_fake2=build_vgg19(255*out_image[1:2,:,:,::-1],reuse=True)
alpha = 0.05
G_loss=F_loss(vgg_real,vgg_fake1) + F_loss(vgg_real,vgg_fake2) + alpha*F_loss(vgg_fake1,vgg_fake2)
t_vars=tf.trainable_variables()
lr=tf.placeholder(tf.float32)
G_opt=tf.train.AdamOptimizer(learning_rate=lr).minimize(G_loss)
sess=tf.Session()
saver=tf.train.Saver(max_to_keep=1000)
sess.run(tf.global_variables_initializer())
ckpt=tf.train.get_checkpoint_state("checkpoint")
if ckpt:
print('loaded '+ckpt.model_checkpoint_path)
saver.restore(sess,ckpt.model_checkpoint_path)
loss_sum = tf.summary.scalar('loss',G_loss)
sum_writer = tf.summary.FileWriter('./log',sess.graph)
allfolders = glob.glob('./result/*0')
lastepoch = 0
for folder in allfolders:
lastepoch = np.maximum(lastepoch, int(folder[-4:]))
counter = 1
num_workers = 8
load_fn = load_fn_example
p_queue = PrefetchQueue(load_fn, train_ids, 1, 32, num_workers=num_workers)
learning_rate = 1e-4
for epoch in range(lastepoch,1001):
if os.path.isdir("result/%04d"%epoch):
continue
if epoch > 500:
learning_rate = 1e-5
for ind in range(len(train_ids)):
st = time.time()
X = p_queue.get_batch() #load a batch for training
input_np = X[0]
gt_np = X[1]
if np.random.randint(2,size=1)[0] == 1: # random flip
input_np = np.flip(input_np, axis=1)
gt_np = np.flip(gt_np, axis=1)
if np.random.randint(2,size=1)[0] == 1:
input_np = np.flip(input_np, axis=2)
gt_np = np.flip(gt_np, axis=2)
if np.random.randint(2,size=1)[0] == 1: # random transpose
input_np = np.transpose(input_np, (0,2,1,3))
gt_np = np.transpose(gt_np, (0,2,1,3))
_,G_current,out_np,sum_str=sess.run([G_opt,G_loss,out_image,loss_sum],feed_dict={in_image:input_np,gt_image:gt_np, lr:learning_rate})
out_np = np.minimum(np.maximum(out_np,0),1)
sum_writer.add_summary(sum_str,counter)
counter += 1
print("%d %s Loss=%.3f Time=%.3f"%(epoch,ind,G_current, time.time()-st))
if epoch%save_freq==0:
#save results for visualization
if not os.path.isdir("result/%04d"%epoch):
os.makedirs("result/%04d"%epoch)
temp = np.concatenate((out_np[0,:,:,:],out_np[1,:,:,:],gt_np[0,:,:,:]),axis=1)*255
temp = np.clip(temp,0,255)
cv2.imwrite("result/%04d/train_%s.jpg"%(epoch,ind),np.uint8(temp))
saver.save(sess,"checkpoint/model.ckpt")