-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathprox_tnn.m
72 lines (68 loc) · 1.68 KB
/
prox_tnn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [X,tnn,trank] = prox_tnn(Y,rho)
% The proximal operator of the tensor nuclear norm of a 3 way tensor
%
% min_X rho*||X||_*+0.5*||X-Y||_F^2
%
% Y - n1*n2*n3 tensor
%
% X - n1*n2*n3 tensor
% tnn - tensor nuclear norm of X
% trank - tensor tubal rank of X
%
% version 2.1 - 14/06/2018
%
% Written by Canyi Lu ([email protected])
%
%
% References:
% Canyi Lu, Tensor-Tensor Product Toolbox. Carnegie Mellon University.
% June, 2018. https://github.com/canyilu/tproduct.
%
% Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin and Shuicheng
% Yan, Tensor Robust Principal Component Analysis with A New Tensor Nuclear
% Norm, arXiv preprint arXiv:1804.03728, 2018
%
[n1,n2,n3] = size(Y);
X = zeros(n1,n2,n3);
Y = fft(Y,[],3);
tnn = 0;
trank = 0;
% first frontal slice
[U,S,V] = svd(Y(:,:,1),'econ');
S = diag(S);
r = length(find(S>rho));
if r>=1
S = S(1:r)-rho;
X(:,:,1) = U(:,1:r)*diag(S)*V(:,1:r)';
tnn = tnn+sum(S);
trank = max(trank,r);
end
% i=2,...,halfn3
halfn3 = round(n3/2);
for i = 2 : halfn3
[U,S,V] = svd(Y(:,:,i),'econ');
S = diag(S);
r = length(find(S>rho));
if r>=1
S = S(1:r)-rho;
X(:,:,i) = U(:,1:r)*diag(S)*V(:,1:r)';
tnn = tnn+sum(S)*2;
trank = max(trank,r);
end
X(:,:,n3+2-i) = conj(X(:,:,i));
end
% if n3 is even
if mod(n3,2) == 0
i = halfn3+1;
[U,S,V] = svd(Y(:,:,i),'econ');
S = diag(S);
r = length(find(S>rho));
if r>=1
S = S(1:r)-rho;
X(:,:,i) = U(:,1:r)*diag(S)*V(:,1:r)';
tnn = tnn+sum(S);
trank = max(trank,r);
end
end
tnn = tnn/n3;
X = ifft(X,[],3);