-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrouter.c
1212 lines (1123 loc) · 60.1 KB
/
router.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Copyright 2013 Bliksem Labs. See the LICENSE file at the top-level directory of this distribution and at https://github.com/bliksemlabs/rrrr/. */
/* router.c : the main routing algorithm */
#include "router.h" // first to ensure it works alone
#include "util.h"
#include "config.h"
#include "tdata.h"
#include "bitset.h"
#include "json.h"
#include "parse.h"
#include "polyline.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <stdint.h>
#define RRRR_RESULT_BUFLEN 16000
static char result_buf[RRRR_RESULT_BUFLEN];
void router_setup(router_t *router, tdata_t *tdata) {
srand(time(NULL));
router->tdata = tdata;
router->best_time = (rtime_t *) malloc(sizeof(rtime_t) * tdata->n_stops);
router->states = (router_state_t *) malloc(sizeof(router_state_t) * (tdata->n_stops * RRRR_MAX_ROUNDS));
router->updated_stops = bitset_new(tdata->n_stops);
router->updated_routes = bitset_new(tdata->n_routes);
if ( ! (router->best_time && router->states && router->updated_stops && router->updated_routes))
die("failed to allocate router scratch space");
}
static inline void router_reset(router_t router) {
}
void router_teardown(router_t *router) {
free(router->best_time);
free(router->states);
bitset_destroy(router->updated_stops);
bitset_destroy(router->updated_routes);
}
// TODO? flag_routes_for_stops all at once after doing transfers? this would require another stops
// bitset for transfer target stops.
/* Given a stop index, mark all routes that serve it as updated. */
static inline void flag_routes_for_stop (router_t *router, router_request_t *req, uint32_t stop_index) {
uint32_t *routes;
uint32_t n_routes = tdata_routes_for_stop (router->tdata, stop_index, &routes);
for (uint32_t i = 0; i < n_routes; ++i) {
calendar_t route_active_flags = router->tdata->route_active[routes[i]];
I printf (" flagging route %d at stop %d\n", routes[i], stop_index);
// CHECK that there are any trips running on this route (another bitfield)
// printf("route flags %d", route_active_flags);
// printBits(4, &route_active_flags);
if ((router->day_mask & route_active_flags) && // seems to provide about 14% increase in throughput
(req->mode & router->tdata->routes[routes[i]].attributes) > 0) {
bitset_set (router->updated_routes, routes[i]);
I printf (" route running\n");
}
}
}
static inline void unflag_banned_routes (router_t *router, router_request_t *req) {
for (uint32_t i = 0; i < req->n_banned_routes; ++i) {
bitset_unset (router->updated_routes, req->banned_route);
}
}
static inline void unflag_banned_stops (router_t *router, router_request_t *req) {
for (uint32_t i = 0; i < req->n_banned_stops; ++i) {
bitset_unset (router->updated_stops, req->banned_stop);
}
}
/* Because the first round begins with so few reached stops, the initial state doesn't get its own full array of states.
Instead we reuse one of the later rounds (round 1) for the initial state. This means we need to reset the walks in
round 1 back to UNREACHED before using them in routing. Rather than iterating over all of them, we only initialize
the stops that can be reached by transfers.
Alternatively we could instead initialize walks to UNREACHED at the beginning of the transfer calculation function.
We should not however reset the best times for those stops reached from the initial stop on foot. This will prevent
finding circuitous itineraries that return to them.
*/
static inline void initialize_transfers (router_t *router, uint32_t round, uint32_t stop_index_from) {
router_state_t *states = router->states + (round * router->tdata->n_stops);
states[stop_index_from].walk_time = UNREACHED;
uint32_t t = router->tdata->stops[stop_index_from ].transfers_offset;
uint32_t tN = router->tdata->stops[stop_index_from + 1].transfers_offset;
for ( ; t < tN ; ++t) {
uint32_t stop_index_to = router->tdata->transfer_target_stops[t];
states[stop_index_to].walk_time = UNREACHED;
}
}
/* Rather than reserving a place to store the transfers used to create the initial state, we look them up as needed. */
static inline rtime_t
transfer_duration (tdata_t *tdata, router_request_t *req, uint32_t stop_index_from, uint32_t stop_index_to) {
if (stop_index_from == stop_index_to) return 0;
uint32_t t = tdata->stops[stop_index_from ].transfers_offset;
uint32_t tN = tdata->stops[stop_index_from + 1].transfers_offset;
for ( ; t < tN ; ++t) {
if (tdata->transfer_target_stops[t] == stop_index_to) {
uint32_t distance_meters = tdata->transfer_dist_meters[t] << 4; // actually in units of 16 meters
return SEC_TO_RTIME((uint32_t)(distance_meters / req->walk_speed + req->walk_slack));
}
}
return UNREACHED;
}
uint32_t
transfer_distance (tdata_t *tdata, uint32_t stop_index_from, uint32_t stop_index_to) {
if (stop_index_from == stop_index_to) return 0;
uint32_t t = tdata->stops[stop_index_from ].transfers_offset;
uint32_t tN = tdata->stops[stop_index_from + 1].transfers_offset;
for ( ; t < tN ; ++t) {
if (tdata->transfer_target_stops[t] == stop_index_to) {
return tdata->transfer_dist_meters[t] << 4; // actually in units of 16 meters
}
}
return UNREACHED;
}
/*
For each updated stop and each destination of a transfer from an updated stop,
set the associated routes as updated. The routes bitset is cleared before the operation,
and the stops bitset is cleared after all transfers have been computed and all routes have been set.
Transfer results are computed within the same round, based on arrival time in the ride phase and
stored in the walk time member of states.
*/
static inline void
apply_transfers (router_t *router, router_request_t *req, uint32_t round) {
router_state_t *states = router->states + (round * router->tdata->n_stops);
/* The transfer process will flag routes that should be explored in the next round */
bitset_reset (router->updated_routes);
for (uint32_t stop_index_from = bitset_next_set_bit (router->updated_stops, 0);
stop_index_from != BITSET_NONE;
stop_index_from = bitset_next_set_bit (router->updated_stops, stop_index_from + 1)) {
I printf ("stop %d was marked as updated \n", stop_index_from);
router_state_t *state_from = states + stop_index_from;
rtime_t time_from = state_from->time;
if (time_from == UNREACHED) {
printf ("ERROR: transferring from unreached stop %d in round %d. \n", stop_index_from, round);
continue;
}
/* At this point, the best time at the from stop may be different than the state_from->time,
because the best time may have been updated by a transfer. */
/*
if (time_from != router->best_time[stop_index_from]) {
printf ("ERROR: time at stop %d in round %d is not the same as its best time. \n", stop_index_from, round);
printf (" from time %s \n", timetext(time_from));
printf (" walk time %s \n", timetext(state_from->walk_time));
printf (" best time %s \n", timetext(router->best_time[stop_index_from]));
continue;
}
*/
I printf (" applying transfer at %d (%s) \n", stop_index_from, tdata_stop_name_for_index(router->tdata, stop_index_from));
/* First apply a transfer from the stop to itself, if case that's the best way */
if (state_from->time == router->best_time[stop_index_from]) {
/* This state's best time is still its own. No improvements from other transfers. */
state_from->walk_time = time_from;
state_from->walk_from = stop_index_from;
// assert (router->best_time[stop_index_from] == time_from);
flag_routes_for_stop (router, req, stop_index_from);
unflag_banned_routes (router, req);
}
/* Then apply transfers from the stop to nearby stops */
uint32_t tr = router->tdata->stops[stop_index_from ].transfers_offset;
uint32_t tr_end = router->tdata->stops[stop_index_from + 1].transfers_offset;
for ( ; tr < tr_end ; ++tr) {
uint32_t stop_index_to = router->tdata->transfer_target_stops[tr];
/* Transfer distances are stored in units of 16 meters, rounded not truncated, in a uint8_t */
uint32_t dist_meters = router->tdata->transfer_dist_meters[tr] << 4;
rtime_t transfer_duration = SEC_TO_RTIME((uint32_t)(dist_meters / req->walk_speed + req->walk_slack));
rtime_t time_to = req->arrive_by ? time_from - transfer_duration
: time_from + transfer_duration;
/* Avoid reserved values including UNREACHED */
if (time_to > RTIME_THREE_DAYS) continue;
/* Catch wrapping/overflow due to limited range of rtime_t (happens normally on overnight routing but should be avoided rather than caught) */
if (req->arrive_by ? time_to > time_from : time_to < time_from) continue;
I printf (" target %d %s (%s) \n", stop_index_to, timetext(router->best_time[stop_index_to]), tdata_stop_name_for_index(router->tdata, stop_index_to));
I printf (" transfer time %s\n", timetext(transfer_duration));
I printf (" transfer result %s\n", timetext(time_to));
router_state_t *state_to = states + stop_index_to;
// TODO verify state_to->walk_time versus router->best_time[stop_index_to]
if (router->best_time[stop_index_to] == UNREACHED || (req->arrive_by ? time_to > router->best_time[stop_index_to]
: time_to < router->best_time[stop_index_to])) {
I printf (" setting %d to %s\n", stop_index_to, timetext(time_to));
state_to->walk_time = time_to;
state_to->walk_from = stop_index_from;
router->best_time[stop_index_to] = time_to;
flag_routes_for_stop (router, req, stop_index_to);
unflag_banned_routes (router, req);
}
}
}
/* Done with all transfers, reset stop-reached bits for the next round */
bitset_reset (router->updated_stops);
/*
Check invariant:
Every stop reached in this round should have a best time equal to its walk time,
and a walk arrival time <= its ride arrival time.
*/
}
static void dump_results(router_t *router) {
router_state_t (*states)[router->tdata->n_stops] = (void*) router->states;
// char id_fmt[10];
// sprintf(id_fmt, "%%%ds", router->tdata->stop_id_width);
char *id_fmt = "%30.30s";
printf("\nRouter states:\n");
printf(id_fmt, "Stop name");
printf(" [sindex]");
for (uint32_t r = 0; r < RRRR_MAX_ROUNDS; ++r){
printf(" round %d walk %d", r, r);
}
printf("\n");
for (uint32_t stop = 0; stop < router->tdata->n_stops; ++stop) {
bool set = false;
for (uint32_t round = 0; round < RRRR_MAX_ROUNDS; ++round) {
if (states[round][stop].walk_time != UNREACHED) {
set = true;
break;
}
}
if ( ! set) continue;
char *stop_id = tdata_stop_name_for_index (router->tdata, stop);
printf(id_fmt, stop_id);
printf(" [%6d]", stop);
for (uint32_t round = 0; round < RRRR_MAX_ROUNDS; ++round) {
printf(" %8s", timetext(states[round][stop].time));
printf(" %8s", timetext(states[round][stop].walk_time));
}
printf("\n");
}
printf("\n");
}
// WARNING we are not currently storing trip IDs so this will segfault
void dump_trips(router_t *router) {
uint32_t n_routes = router->tdata->n_routes;
for (uint32_t ridx = 0; ridx < n_routes; ++ridx) {
route_t route = router->tdata->routes[ridx];
char (*trip_ids)[router->tdata->trip_id_width] = (void*)
tdata_trip_ids_for_route(router->tdata, ridx);
calendar_t *trip_masks = tdata_trip_masks_for_route(router->tdata, ridx);
printf ("route %d (of %d), n trips %d, n stops %d\n", ridx, n_routes, route.n_trips, route.n_stops);
for (uint32_t tidx = 0; tidx < route.n_trips; ++tidx) {
printf ("trip index %d trip_id %s mask ", tidx, trip_ids[tidx]);
printBits (4, & (trip_masks[tidx]));
printf ("\n");
}
}
exit(0);
}
/* Find a suitable trip to board at the given time and stop.
Returns the trip index within the route. */
uint32_t find_departure(route_t *route, stoptime_t (*stop_times)[route->n_stops]) {
return NONE;
}
static void day_mask_dump (calendar_t mask) {
printf ("day mask: ");
printBits (4, &mask);
printf ("bits set: ");
for (int i = 0; i < 32; ++i) if (mask & (1 << i)) printf ("%d ", i);
printf ("\n");
}
static void service_day_dump (serviceday_t *serviceday) {
printf ("service day\nmidnight: %s \n", timetext(serviceday->midnight));
day_mask_dump (serviceday->mask);
printf ("real-time: %s \n\n", serviceday->apply_realtime ? "YES" : "NO");
}
static inline rtime_t
tdata_depart (tdata_t* td, trip_t *trip, uint32_t route_stop) {
return trip->begin_time + td->stop_times[trip->stop_times_offset + route_stop].departure;
}
static inline rtime_t
tdata_arrive (tdata_t* td, trip_t *trip, uint32_t route_stop) {
return trip->begin_time + td->stop_times[trip->stop_times_offset + route_stop].arrival;
}
/* Get the departure or arrival time of the given trip on the given service day, applying realtime data as needed. */
static inline rtime_t
tdata_stoptime (tdata_t* tdata, trip_t *trip, uint32_t route_stop, bool arrive, serviceday_t *serviceday) {
rtime_t time, time_adjusted;
if (arrive) time = tdata_arrive(tdata, trip, route_stop);
else time = tdata_depart(tdata, trip, route_stop);
time_adjusted = time + serviceday->midnight;
/*
printf ("boarding at stop %d, time is: %s \n", route_stop, timetext (time));
printf (" after adjusting: %s \n", timetext (time_adjusted));
printf (" midnight: %d \n", serviceday->midnight);
printf (" delay (4sec): %d \n", trip->realtime_delay);
*/
/* Detect overflow (this will still not catch wrapping due to negative delays on small positive times) */
// actually this happens naturally with times like '03:00+1day' transposed to serviceday 'tomorrow'
if (time_adjusted < time) return UNREACHED;
/* Apply real time delay on the relevant days. */
if (serviceday->apply_realtime) time_adjusted += trip->realtime_delay;
return time_adjusted;
}
bool router_route(router_t *router, router_request_t *req) {
// router_request_dump(router, preq);
uint32_t n_stops = router->tdata->n_stops;
router->day_mask = req->day_mask;
/* One serviceday_t for each of: yesterday, today, tomorrow (for overnight searches) */
/* Note that yesterday's bit flag will be 0 if today is the first day of the calendar. */
{
// One bit for the calendar day on which realtime data should be applied (applying only on the true current calendar day)
calendar_t realtime_mask = 1 << ((time(NULL) - router->tdata->calendar_start_time) / SEC_IN_ONE_DAY);
serviceday_t yesterday;
yesterday.midnight = 0;
yesterday.mask = router->day_mask >> 1;
yesterday.apply_realtime = yesterday.mask & realtime_mask;
serviceday_t today;
today.midnight = RTIME_ONE_DAY;
today.mask = router->day_mask;
today.apply_realtime = today.mask & realtime_mask;
serviceday_t tomorrow;
tomorrow.midnight = RTIME_TWO_DAYS;
tomorrow.mask = router->day_mask << 1;
tomorrow.apply_realtime = tomorrow.mask & realtime_mask;
/* Iterate backward over days for arrive-by searches. */
if (req->arrive_by) {
router->servicedays[0] = tomorrow;
router->servicedays[1] = today;
router->servicedays[2] = yesterday;
} else {
router->servicedays[0] = yesterday;
router->servicedays[1] = today;
router->servicedays[2] = tomorrow;
}
/* set day_mask to catch all service days (0, 1, 2) */
router->day_mask = yesterday.mask | today.mask | tomorrow.mask;
}
// for (int i = 0; i < 3; ++i) service_day_dump (&routers->servicedays[i]);
// day_mask_dump (router->day_mask);
I router_request_dump(router, req);
T printf("\norigin_time %s \n", timetext(req->time));
T tdata_dump(router->tdata);
I printf("Initializing router state \n");
// Router state is a C99 dynamically dimensioned array of size [RRRR_MAX_ROUNDS][n_stops]
router_state_t (*states)[n_stops] = (router_state_t(*)[]) router->states;
for (uint32_t round = 0; round < RRRR_MAX_ROUNDS; ++round) {
for (uint32_t stop = 0; stop < n_stops; ++stop) {
// We use the time fields to record when stops have been reached.
// When times are UNREACHED the other fields in the same state should never be read.
states[round][stop].time = UNREACHED;
states[round][stop].walk_time = UNREACHED;
/*
states[round][stop].back_stop = NONE;
states[round][stop].back_route = NONE;
states[round][stop].back_trip = NONE;
states[round][stop].board_time = UNREACHED;
states[round][stop].back_trip_id = NULL;
*/
}
}
for (uint32_t s = 0; s < n_stops; ++s) router->best_time[s] = UNREACHED;
/* Stop indexes where the search process begins and ends, independent of arrive_by */
if (req->arrive_by) {
router->origin = req->to;
router->target = req->from;
} else {
router->origin = req->from;
router->target = req->to;
}
if (req->start_trip_route != NONE && req->start_trip_trip != NONE) {
/* We are starting on board a trip, not at a station. */
/* On-board departure only makes sense for depart-after requests. */
if (req->arrive_by) {
fprintf (stderr, "An arrive-by search does not make any sense if you are starting on-board.\n");
return false;
}
/*
We cannot expand the start trip into the temporary round (1) during initialization because we may be able to
reach the destination on that starting trip.
We discover the previous stop and flag only the selected route for exploration in round 0. This would
interfere with search reversal, but reversal is meaningless/useless in on-board depart trips anyway.
*/
route_t route = router->tdata->routes[req->start_trip_route];
trip_t *trip = tdata_trips_for_route (router->tdata, req->start_trip_route) + req->start_trip_trip;
uint32_t *route_stops = tdata_stops_for_route(router->tdata, req->start_trip_route);
uint32_t prev_stop = NONE;
rtime_t prev_stop_time = UNREACHED;
// add tdata function to return next stop and stoptime given route, trip, and time
for (int route_stop = 0; route_stop < route.n_stops; ++route_stop) {
uint32_t stop = route_stops[route_stop];
rtime_t time = tdata_stoptime (router->tdata, trip, route_stop, false, &(router->servicedays[1]));
/* Find stop immediately after the given time on the given trip. */
if (req->arrive_by ? time > req->time : time < req->time) {
if (prev_stop_time == UNREACHED || (req->arrive_by ? time < prev_stop_time : time > prev_stop_time)) {
prev_stop = stop;
prev_stop_time = time;
}
}
}
if (prev_stop != NONE) {
/* rewrite the request to begin at the previous stop on the starting trip */
char *prev_stop_id = tdata_stop_name_for_index(router->tdata, prev_stop); //TODO Andrew shouldn't this be stop_id?
// printf ("Based on start trip and time, chose previous stop %s [%d] at %s\n", prev_stop_id, prev_stop, timetext(prev_stop_time));
req->from = ONBOARD;
/* Initialize origin state */
router->origin = prev_stop; // only origin is used from here on in routing
router->best_time[router->origin] = prev_stop_time;
states[1][router->origin].time = prev_stop_time;
states[1][router->origin].walk_time = prev_stop_time;
/* When starting on board, only flag one route and do not apply transfers, only a single walk. */
bitset_reset (router->updated_stops);
bitset_reset (router->updated_routes);
bitset_set (router->updated_routes, req->start_trip_route);
}
}
/* Initialize origin state if not beginning the search on board. */
if (req->from != ONBOARD) {
/* We will use round 1 to hold the initial state for round 0. Round 1 must then be re-initialized before use. */
router->best_time[router->origin] = req->time;
states[1][router->origin].time = req->time;
// the rest of these should be unnecessary
states[1][router->origin].back_stop = NONE;
states[1][router->origin].back_route = NONE;
states[1][router->origin].back_trip = NONE;
states[1][router->origin].board_time = UNREACHED;
/* Hack to communicate the origin time to itinerary renderer. It would be better to just include rtime_t in request structs. */
// TODO eliminate this now that we have rtimes in requests
states[0][router->origin].time = req->time;
bitset_reset(router->updated_stops);
// This is inefficient, as it depends on iterating over a bitset with only one bit true.
bitset_set(router->updated_stops, router->origin);
// Remove the banned stops from the bitset (do we really want to do this here? this could only remove the origin stop.)
unflag_banned_stops(router, req);
// Apply transfers to initial state, which also initializes the updated routes bitset.
apply_transfers(router, req, 1);
// dump_results(router);
}
/* apply upper bounds (speeds up second and third reversed searches) */
uint32_t n_rounds = req->max_transfers + 1;
if (n_rounds > RRRR_MAX_ROUNDS)
n_rounds = RRRR_MAX_ROUNDS;
// Iterate over rounds. In round N, we have made N transfers.
for (uint8_t round = 0; round < n_rounds; ++round) { // < n_rounds to apply upper bound on transfers...
router_round(router, req, round);
} // end for (round)
return true;
}
void router_round(router_t *router, router_request_t *req, uint8_t round) {
// TODO restrict pointers?
uint32_t n_stops = router->tdata->n_stops;
router_state_t (*states)[n_stops] = (router_state_t(*)[]) router->states;
uint8_t last_round = (round == 0) ? 1 : round - 1;
I printf("round %d\n", round);
// Iterate over all routes which contain a stop that was updated in the last round.
for (uint32_t route_idx = bitset_next_set_bit (router->updated_routes, 0);
route_idx != BITSET_NONE;
route_idx = bitset_next_set_bit (router->updated_routes, route_idx + 1)) {
route_t route = router->tdata->routes[route_idx]; // really, 'trip' should be a trip_t to follow this same convention, and trip_idx should be its index
#ifdef FEATURE_AGENCY_FILTER
if (req->agency != AGENCY_UNFILTERED && req->agency != route.agency_index) continue;
#endif
bool route_overlap = route.min_time < route.max_time - RTIME_ONE_DAY;
/*
if (route_overlap) printf ("min time %d max time %d overlap %d \n", route.min_time, route.max_time, route_overlap);
printf ("route %d has min_time %d and max_time %d. \n", route_idx, route.min_time, route.max_time);
printf (" actual first time: %d \n", tdata_depart(router->tdata, route_idx, 0, 0));
printf (" actual last time: %d \n", tdata_arrive(router->tdata, route_idx, route.n_trips - 1, route.n_stops - 1));
*/
I printf(" route %d: %s;%s\n", route_idx, tdata_shortname_for_route(router->tdata, route_idx),tdata_headsign_for_route(router->tdata, route_idx));
T tdata_dump_route(router->tdata, route_idx, NONE);
// For each stop in this route, its global stop index.
uint32_t *route_stops = tdata_stops_for_route(router->tdata, route_idx);
uint8_t *route_stop_attributes = tdata_stop_attributes_for_route(router->tdata, route_idx);
trip_t *route_trips = tdata_trips_for_route(router->tdata, route_idx); // TODO use to avoid calculating at every stop
uint8_t *route_trip_attributes = tdata_trip_attributes_for_route(router->tdata, route_idx);
calendar_t *trip_masks = tdata_trip_masks_for_route(router->tdata, route_idx);
uint32_t trip = NONE; // trip index within the route. NONE means not yet boarded.
uint32_t board_stop = 0; // stop index where that trip was boarded
rtime_t board_time = 0; // time when that trip was boarded
serviceday_t *board_serviceday = NULL; // Service day on which that trip was boarded
/*
Iterate over stop indexes within the route. Each one corresponds to a global stop index.
Note that the stop times array should be accessed with [trip][route_stop] not [trip][stop].
The iteration variable is signed to allow ending the iteration at the beginning of the route.
*/
for (int route_stop = req->arrive_by ? route.n_stops - 1 : 0;
req->arrive_by ? route_stop >= 0 : route_stop < route.n_stops;
req->arrive_by ? --route_stop : ++route_stop ) {
uint32_t stop = route_stops[route_stop];
I printf(" stop %2d [%d] %s %s\n", route_stop, stop,
timetext(router->best_time[stop]), tdata_stop_name_for_index (router->tdata, stop));
/*
If a stop in in banned_stop_hard, we do not want to transit through this station
we reset the current trip to NONE and skip the currect stop.
This effectively splits the route in two, and forces a re-board afterwards.
*/
for (uint32_t bsh = 0; bsh < req->n_banned_stops_hard; bsh++) {
if (stop == req->banned_stop_hard) {
trip = NONE;
continue;
}
}
/*
If we are not already on a trip, or if we might be able to board a better trip on
this route at this location, indicate that we want to search for a trip.
*/
bool attempt_board = false;
rtime_t prev_time = states[last_round][stop].walk_time;
if (prev_time != UNREACHED) { // Only board at placed that have been reached.
if (trip == NONE || req->via == stop) {
attempt_board = true;
} else if (trip != NONE && req->via != NONE && req->via == board_stop) {
attempt_board = false;
} else {
// removed xfer slack for simplicity
// is this repetitively triggering re-boarding searches along a single route?
rtime_t trip_time = tdata_stoptime (router->tdata, &(route_trips[trip]), route_stop, req->arrive_by, board_serviceday);
if (trip_time == UNREACHED) attempt_board = false;
else if (req->arrive_by ? prev_time > trip_time
: prev_time < trip_time) {
attempt_board = true;
I printf (" [reboarding here] trip = %s\n", timetext(trip_time));
}
}
}
if (!(route_stop_attributes[route_stop] & rsa_boarding)) //Boarding not allowed
if (req->arrive_by ? trip != NONE : attempt_board) //and we're attempting to board
continue; //Boarding not allowed and attemping to board
if (!(route_stop_attributes[route_stop] & rsa_alighting)) //Alighting not allowed
if (req->arrive_by ? attempt_board : trip != NONE) //and we're seeking to alight
continue; //Alighting not allowed and attemping to alight
/* If we have not yet boarded a trip on this route, see if we can board one.
Also handle the case where we hit a stop with an existing better arrival time. */
// TODO: check if this is the last stop -- no point boarding there or marking routes
if (attempt_board) {
I printf (" attempting boarding at stop %d\n", stop);
T tdata_dump_route(router->tdata, route_idx, NONE);
/* Scan all trips to find the soonest trip that can be boarded, if any.
Real-time updates can ruin FIFO ordering of trips within routes.
Scanning through the whole list of trips reduces speed by ~20 percent over binary search. */
uint32_t best_trip = NONE;
rtime_t best_time = req->arrive_by ? 0 : UINT16_MAX;
serviceday_t *best_serviceday = NULL;
/* Search trips within days. The loop nesting could also be inverted. */
for (serviceday_t *serviceday = router->servicedays; serviceday <= router->servicedays + 2; ++serviceday) {
/* Check that this route still has any trips running on this day. */
if (req->arrive_by ? prev_time < serviceday->midnight + route.min_time
: prev_time > serviceday->midnight + route.max_time) continue;
/* Check whether there's any chance of improvement by scanning additional days. */
/* Note that day list is reversed for arrive-by searches. */
if (best_trip != NONE && ! route_overlap) break;
for (uint32_t this_trip = 0; this_trip < route.n_trips; ++this_trip) {
// D printBits(4, & (trip_masks[this_trip]));
// D printBits(4, & (serviceday->mask));
// D printf("\n");
/* skip this trip if it is banned */
for (uint32_t bt = 0; bt < req->n_banned_trips; bt++) if (route_idx == req->banned_trip_route && this_trip == req->banned_trip_offset) continue;
/* skip this trip if it is not running on the current service day */
if ( ! (serviceday->mask & trip_masks[this_trip])) continue;
/* skip this trip if it doesn't have all our required attributes */
if ( ! ((req->trip_attributes & route_trip_attributes[this_trip]) == req->trip_attributes)) continue;
/* skip this trip if the realtime delay equals CANCELED */
if ( route_trips[this_trip].realtime_delay == CANCELED) continue;
/* consider the arrival or departure time on the current service day */
rtime_t time = tdata_stoptime (router->tdata, &(route_trips[this_trip]), route_stop, req->arrive_by, serviceday);
// T printf(" board option %d at %s \n", this_trip, ...
if (time == UNREACHED) continue; // rtime overflow due to long overnight trips on day 2
/* Mark trip for boarding if it improves on the last round's post-walk time at this stop.
Note: we should /not/ be comparing to the current best known time at this stop, because
it may have been updated in this round by another trip (in the pre-walk transit phase). */
if (req->arrive_by ? time <= prev_time && time > best_time
: time >= prev_time && time < best_time) {
best_trip = this_trip;
best_time = time;
best_serviceday = serviceday;
}
} // end for (trips within this route)
} // end for (service days: yesterday, today, tomorrow)
if (best_trip != NONE) {
I printf(" boarding trip %d at %s \n", best_trip, timetext(best_time));
if ((req->arrive_by ? best_time > req->time : best_time < req->time) && req->from != ONBOARD) {
printf("ERROR: boarded before start time, trip %d stop %d \n", best_trip, stop);
} else {
// use a router_state struct for all this?
board_time = best_time;
board_stop = stop;
board_serviceday = best_serviceday;
trip = best_trip;
}
} else {
T printf(" no suitable trip to board.\n");
}
continue; // to the next stop in the route
} else if (trip != NONE) { // We have already boarded a trip along this route.
rtime_t time = tdata_stoptime (router->tdata, &(route_trips[trip]), route_stop, !req->arrive_by, board_serviceday);
if (time == UNREACHED) continue; // overflow due to long overnight trips on day 2
T printf(" on board trip %d considering time %s \n", trip, timetext(time));
// Target pruning, sec. 3.1 of RAPTOR paper.
if ((router->best_time[router->target] != UNREACHED) &&
(req->arrive_by ? time < router->best_time[router->target]
: time > router->best_time[router->target])) {
T printf(" (target pruning)\n");
// We cannot break out of this route entirely, because re-boarding may occur at a later stop.
continue;
}
if ((req->time_cutoff != UNREACHED) &&
(req->arrive_by ? time < req->time_cutoff
: time > req->time_cutoff)) {
continue;
}
// Do we need best_time at all? yes, because the best time may not have been found in the previous round.
bool improved = (router->best_time[stop] == UNREACHED) ||
(req->arrive_by ? time > router->best_time[stop]
: time < router->best_time[stop]);
if (!improved) {
I printf(" (no improvement)\n");
continue; // the current trip does not improve on the best time at this stop
}
if (time > RTIME_THREE_DAYS) {
/* Reserve all time past three days for special values like UNREACHED. */
} else if (req->arrive_by ? time > req->time : time < req->time) {
/* Wrapping/overflow. This happens due to overnight trips on day 2. Prune them. */
// printf("ERROR: setting state to time before start time. route %d trip %d stop %d \n", route_idx, trip, stop);
} else { // TODO should alighting handled here? if ((route_stop_attributes[route_stop] & rsa_alighting) == rsa_alighting)
I printf(" setting stop to %s \n", timetext(time));
router->best_time[stop] = time;
states[round][stop].time = time;
states[round][stop].back_route = route_idx;
states[round][stop].back_trip = trip;
states[round][stop].back_stop = board_stop;
states[round][stop].board_time = board_time;
if (req->arrive_by) {
if (board_time < time) printf ("board time non-decreasing\n");
} else {
if (board_time > time) printf ("board time non-increasing\n");
}
bitset_set(router->updated_stops, stop); // mark stop for next round.
}
}
} // end for (stop)
} // end for (route)
// Remove the banned stops from the bitset, so no transfers will happen there.
unflag_banned_stops(router, req);
/* Also updates the list of routes for next round based on stops that were touched in this round. */
apply_transfers(router, req, round);
// exit(0);
/* Initialize the stops in round 1 that were used as starting points for round 0. */
if (round == 0) initialize_transfers (router, 1, router->origin);
// dump_results(router); // DEBUG
}
/* Reverse the times and stops in a leg. Used for creating arrive-by itineraries. */
static inline void leg_swap (struct leg *leg) {
struct leg temp = *leg;
leg->s0 = temp.s1;
leg->s1 = temp.s0;
leg->t0 = temp.t1;
leg->t1 = temp.t0;
}
/* Checks charateristics that should be the same for all trip plans produced by this router:
All stops should chain, all times should be increasing, all waits should be at the ends of walk legs, etc.
Returns true if any of the checks fail, false if no problems are detected. */
static bool check_plan_invariants (struct plan *plan) {
bool fail = false;
struct itinerary *prev_itin = NULL;
rtime_t prev_target_time = UNREACHED;
/* Loop over all itineraries in this plan. */
for (uint32_t i = 0; i < plan->n_itineraries; ++i) {
struct itinerary *itin = plan->itineraries + i;
if (itin->n_legs < 1) {
fprintf(stderr, "itinerary contains no legs.\n");
fail = true;
} else {
/* Itinarary has at least one leg. Grab its first and last leg. */
struct leg *leg0 = itin->legs;
struct leg *legN = itin->legs + (itin->n_legs - 1);
/* Itineraries should be Pareto-optimal. Increase in number of rides implies improving arrival time. */
rtime_t target_time = plan->req.arrive_by ? leg0->t0 : legN->t1;
if (i > 0) {
if (itin->n_legs <= prev_itin->n_legs) {
fprintf(stderr, "itineraries do not have strictly increasing numbers of legs: %d, %d.\n", prev_itin->n_legs, itin->n_legs);
fail = true;
}
if (plan->req.arrive_by ? target_time <= prev_target_time : target_time >= prev_target_time) {
fprintf(stderr, "itineraries do not have strictly improving target times: %d, %d.\n", prev_target_time, target_time);
fail = true;
}
}
prev_target_time = target_time;
prev_itin = itin;
/* Check that itinerary does indeed connect the places in the request. */
if (leg0->s0 != plan->req.from) {
fprintf(stderr, "itinerary does not begin at from location.\n");
fail = true;
}
if (legN->s1 != plan->req.to) {
fprintf(stderr, "itinerary does not end at to location.\n");
fail = true;
}
/* Check that the itinerary respects the depart after or arrive-by criterion */
/* finish when rtimes are in requests
if (plan->req.arrive_by) {
if (itin->legs[itin->n_legs - 1].s1 > plan->req.time)...
} else {
if (itin->legs[0].s0 < plan->req.time)...
}
*/
/* All itineraries are composed of ride-walk pairs, prefixed by a single walk leg. */
if (itin->n_legs % 2 != 1) {
fprintf(stderr, "itinerary has an inexplicable (even) number of legs: %d\n", itin->n_legs);
fail = true;
}
}
/* Check per-leg invariants within each itinerary. */
struct leg *prev_leg = NULL;
for (uint32_t l = 0; l < itin->n_legs; ++l) {
struct leg *leg = itin->legs + l;
if (l % 2 == 0) {
if (leg->route != WALK) fprintf(stderr, "even numbered leg %d has route %d not WALK.\n", l, leg->route);
fail = true;
} else {
if (leg->route == WALK) fprintf(stderr, "odd numbered leg %d has route WALK.\n", l);
fail = true;
}
if (leg->t1 < leg->t0) {
fprintf(stderr, "non-increasing times within leg %d: %d, %d\n", l, leg->t0, leg->t1);
fail = true;
}
if (l > 0) {
if (leg->s0 != prev_leg->s1) {
fprintf(stderr, "legs do not chain: leg %d begins with stop %d, previous leg ends with stop %d.\n", l, leg->s0, prev_leg->s1);
fail = true;
}
if (leg->route == WALK && leg->t0 != prev_leg->t1) {
/* This will fail unless reversal is being performed */
// fprintf(stderr, "walk leg does not immediately follow ride: leg %d begins at time %d, previous leg ends at time %d.\n", l, leg->t0, prev_leg->t1);
// fail = true;
}
if (leg->t0 < prev_leg->t1) {
fprintf(stderr, "itin %d: non-increasing times between legs %d and %d: %d, %d\n", i, l - 1, l, prev_leg->t1, leg->t0);
fail = true;
}
}
prev_leg = leg;
} /* End for (legs) */
} /* End for (itineraries) */
return fail;
}
void router_result_to_plan (struct plan *plan, router_t *router, router_request_t *req) {
uint32_t n_stops = router->tdata->n_stops;
/* Router states are a 2D array of stride n_stops */
router_state_t (*states)[n_stops] = (router_state_t(*)[]) router->states;
plan->n_itineraries = 0;
plan->req = *req; // copy the request into the plan for use in rendering
struct itinerary *itin = plan->itineraries;
/* Loop over the rounds to get ending states of itineraries using different numbers of vehicles */
for (int n_xfers = 0; n_xfers < RRRR_MAX_ROUNDS; ++n_xfers) {
/* Work backward from the target to the origin */
uint32_t stop = (req->arrive_by ? req->from : req->to);
/* skip rounds that were not reached */
if (states[n_xfers][stop].walk_time == UNREACHED) continue;
itin->n_rides = n_xfers + 1;
itin->n_legs = itin->n_rides * 2 + 1; // always same number of legs for same number of transfers
struct leg *l = itin->legs; // the slot in which record a leg, reversing them for forward trips
if ( ! req->arrive_by) l += itin->n_legs - 1;
/* Follow the chain of states backward */
for (int round = n_xfers; round >= 0; --round) {
if (stop > router->tdata->n_stops) {
printf ("ERROR: stopid %d out of range.\n", stop);
break;
}
/* Walk phase */
router_state_t *walk = &(states[round][stop]);
if (walk->walk_time == UNREACHED) {
printf ("ERROR: stop %d was unreached by walking.\n", stop);
break;
}
uint32_t walk_stop = stop;
stop = walk->walk_from; /* follow the chain of states backward */
/* Ride phase */
router_state_t *ride = &(states[round][stop]);
if (ride->time == UNREACHED) {
printf ("ERROR: stop %d was unreached by riding.\n", stop);
break;
}
uint32_t ride_stop = stop;
stop = ride->back_stop; /* follow the chain of states backward */
/* Walk phase */
l->s0 = walk->walk_from;
l->s1 = walk_stop;
l->t0 = ride->time; /* Rendering the walk requires already having the ride arrival time */
l->t1 = walk->walk_time;
l->route = WALK;
l->trip = WALK;
if (req->arrive_by) leg_swap (l);
l += (req->arrive_by ? 1 : -1); /* next leg */
/* Ride phase */
l->s0 = ride->back_stop;
l->s1 = ride_stop;
l->t0 = ride->board_time;
l->t1 = ride->time;
l->route = ride->back_route;
l->trip = ride->back_trip;
if (req->arrive_by) leg_swap (l);
l += (req->arrive_by ? 1 : -1); /* next leg */
}
if (req->start_trip_trip != NONE) {
/* Results starting on board do not have an initial walk leg. */
l->s0 = l->s1 = ONBOARD;
l->t0 = l->t1 = req->time;
l->route = l->trip = WALK;
l += 1; // move back to first transit leg
l->s0 = ONBOARD;
l->t0 = req->time;
} else {
/* The initial walk leg leading out of the search origin. This is inferred, not stored explicitly. */
router_state_t *final_walk = &(states[0][stop]);
uint32_t origin_stop = (req->arrive_by ? req->to : req->from);
l->s0 = origin_stop;
l->s1 = stop;
/* It would also be possible to work from s1 to s0 and compress out the wait time. */
l->t0 = states[0][origin_stop].time;
rtime_t duration = transfer_duration (router->tdata, req, l->s0, l->s1);
l->t1 = l->t0 + (req->arrive_by ? -duration : +duration);
l->route = WALK;
l->trip = WALK;
if (req->arrive_by) leg_swap (l);
}
/* Move to the next itinerary in the plan. */
plan->n_itineraries += 1;
itin += 1;
}
check_plan_invariants (plan);
}
static inline char *plan_render_itinerary (struct itinerary *itin, tdata_t *tdata, char *b, char *b_end) {
b += sprintf (b, "\nITIN %d rides \n", itin->n_rides);
/* Render the legs of this itinerary, which are in chronological order */
for (struct leg *leg = itin->legs; leg < itin->legs + itin->n_legs; ++leg) {
char ct0[16];
char ct1[16];
btimetext(leg->t0, ct0);
btimetext(leg->t1, ct1);
char *s0_id = tdata_stop_name_for_index(tdata, leg->s0);
char *s1_id = tdata_stop_name_for_index(tdata, leg->s1);
char *agency_name = (leg->route == WALK) ? "" : tdata_agency_name_for_route (tdata, leg->route);
char *short_name = (leg->route == WALK) ? "walk" : tdata_shortname_for_route (tdata, leg->route);
char *headsign = (leg->route == WALK) ? "walk" : tdata_headsign_for_route (tdata, leg->route);
char *productcategory = (leg->route == WALK) ? "" : tdata_productcategory_for_route (tdata, leg->route);
float delay_min = (leg->route == WALK) ? 0 : tdata_delay_min (tdata, leg->route, leg->trip);
char *leg_mode = NULL;
if (leg->route == WALK) {
/* Skip uninformative legs that just tell you to stay in the same place. if (leg->s0 == leg->s1) continue; */
if (leg->s0 == ONBOARD) continue;
if (leg->s0 == leg->s1) leg_mode = "WAIT";
else leg_mode = "WALK";
} else
if ((tdata->routes[leg->route].attributes & m_tram) == m_tram) leg_mode = "TRAM"; else
if ((tdata->routes[leg->route].attributes & m_subway) == m_subway) leg_mode = "SUBWAY"; else
if ((tdata->routes[leg->route].attributes & m_rail) == m_rail) leg_mode = "RAIL"; else
if ((tdata->routes[leg->route].attributes & m_bus) == m_bus) leg_mode = "BUS"; else
if ((tdata->routes[leg->route].attributes & m_ferry) == m_ferry) leg_mode = "FERRY"; else
if ((tdata->routes[leg->route].attributes & m_cablecar) == m_cablecar) leg_mode = "CABLE_CAR"; else
if ((tdata->routes[leg->route].attributes & m_gondola) == m_gondola) leg_mode = "GONDOLA"; else
if ((tdata->routes[leg->route].attributes & m_funicular) == m_funicular) leg_mode = "FUNICULAR"; else
leg_mode = "INVALID";
char *alert_msg = NULL;
if (leg->route != WALK && tdata->alerts) {
for (size_t e = 0; e < tdata->alerts->n_entity; ++e) {
TransitRealtime__FeedEntity *entity = tdata->alerts->entity[e];
if (entity == NULL) break;
TransitRealtime__Alert *alert = entity->alert;
if (alert == NULL) break;
for (size_t ie = 0; ie < alert->n_informed_entity; ++ie) {
TransitRealtime__EntitySelector *informed_entity = alert->informed_entity[ie];
// TransitRealtime__TripDescriptor *trip = informed_entity->trip;
if ( ( (!informed_entity->route_id) || (memcmp(informed_entity->route_id, &leg->route, sizeof(leg->route)) == 0 ) ) &&
( (!informed_entity->stop_id) || (memcmp(informed_entity->stop_id, &leg->s0, sizeof(leg->s0)) == 0 ) ) &&
( (!informed_entity->trip) || (!informed_entity->trip->trip_id) || (memcmp(informed_entity->trip->trip_id, &leg->trip, sizeof(leg->trip)) == 0 ) )
// TODO: need to have rtime_to_date for informed_entity->trip->start_date
// TODO: need to have rtime_to_epoch for informed_entity->active_period
) {
alert_msg = alert->header_text->translation[0]->text;
}
if (alert_msg) break;
}
if (alert_msg) break;
}
}
b += sprintf (b, "%s %5d %3d %5d %5d %s %s %+3.1f ;%s;%s;%s;%s;%s;%s;%s\n",
leg_mode, leg->route, leg->trip, leg->s0, leg->s1, ct0, ct1, delay_min,agency_name, short_name, headsign, productcategory, s0_id, s1_id,
(alert_msg ? alert_msg : ""));
/* EXAMPLE
polyline_for_leg (tdata, leg);
b += sprintf (b, "%s\n", polyline_result());
*/
if (b > b_end) {
printf ("buffer overflow\n");
exit(2);
}
}
return b;
}
/* Write a plan structure out to a text buffer in tabular format. */
static inline uint32_t plan_render(struct plan *plan, tdata_t *tdata, router_request_t *req, char *buf, uint32_t buflen) {
char *b = buf;
char *b_end = buf + buflen;
if ((req->optimise & o_all) == o_all) {
/* Iterate over itineraries in this plan, which are in increasing order of number of rides */
for (struct itinerary *itin = plan->itineraries; itin < plan->itineraries + plan->n_itineraries; ++itin) {
b = plan_render_itinerary (itin, tdata, b, b_end);
}
} else if (plan->n_itineraries > 0) {
if ((req->optimise & o_transfers) == o_transfers) {
/* only render the first itinerary, which has the least transfers */
b = plan_render_itinerary (plan->itineraries, tdata, b, b_end);
}
if ((req->optimise & o_shortest) == o_shortest) {
/* only render the last itinerary, which has the most rides and is the shortest in time */
b = plan_render_itinerary (&plan->itineraries[plan->n_itineraries - 1], tdata, b, b_end);
}
}
*b = '\0';
return b - buf;
}
/*
After routing, call to convert the router state into a readable list of itinerary legs.
Returns the number of bytes written to the buffer.
*/
uint32_t router_result_dump(router_t *router, router_request_t *req, char *buf, uint32_t buflen) {
struct plan plan;
router_result_to_plan (&plan, router, req);
// plan_render_json (&plan, router->tdata, req);
return plan_render (&plan, router->tdata, req, buf, buflen);
}
uint32_t rrrrandom(uint32_t limit) {
return (uint32_t) (limit * (random() / (RAND_MAX + 1.0)));
}
uint32_t rrrrandom_stop_by_agency(tdata_t *tdata, uint16_t agency_index) {
uint32_t n_routes_agency = 0;
for (uint32_t route_idx = 0; route_idx < tdata->n_routes; route_idx++) {
if (tdata->routes[route_idx].agency_index == agency_index) n_routes_agency++;
}
if (n_routes_agency == 0) return NONE;
n_routes_agency = rrrrandom (n_routes_agency + 1);
for (uint32_t route_idx = 0; route_idx < tdata->n_routes; route_idx++) {
if (tdata->routes[route_idx].agency_index == agency_index) {
if (n_routes_agency == 0) {
return tdata->route_stops[tdata->routes[route_idx].route_stops_offset + rrrrandom (tdata->routes[route_idx].n_stops)];
} else {
n_routes_agency--;
}