-
Notifications
You must be signed in to change notification settings - Fork 100
/
Copy pathtr1-13B-short.slurm
189 lines (157 loc) · 5.17 KB
/
tr1-13B-short.slurm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/bin/bash
#SBATCH --job-name=tr1-13B-short
#SBATCH --constraint=v100-32g
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
#SBATCH --cpus-per-task=40 # number of cores per tasks
#SBATCH --hint=nomultithread # we get physical cores not logical
#SBATCH --gres=gpu:4 # number of gpus
#SBATCH --time 20:00:00 # maximum execution time (HH:MM:SS)
#SBATCH --output=%x-%j.out # output file name
#SBATCH --account=six@v100
# This is the same as the main script but pre-configured for a small model that can be easily tested
# on 1 or 2 nodes, which is handy to verify everything works before using it on the main training.
#
# It's also useful for pre-building megatron CUDA kernels if and when things get borked and it gets stuck in building kernels.
#
# Change to NNODES=1 if needed
#
# to allocate (change to 2 for NNODES=2)
# salloc --constraint=v100-32g --account=six@v100 --nodes=1 --ntasks=1 --cpus-per-task=40 --gres=gpu:4 --hint=nomultithread --time=6:00:00 bash
source $six_ALL_CCFRWORK/code/tr1-13B/bigscience/train/tr1-13B-base/start-tr1-13B
set -x -e
echo "START TIME: $(date)"
#ROUND=3
DATA_OUTPUT_PATH=$six_ALL_CCFRSCRATCH/checkpoints/tr1-13B-test
CHECKPOINT_PATH=$DATA_OUTPUT_PATH/checkpoints
TENSORBOARD_PATH=$DATA_OUTPUT_PATH/tensorboard
CODECARBON_PATH=$DATA_OUTPUT_PATH/codecarbon
LOGS_PATH=$DATA_OUTPUT_PATH/logs
MEGATRON_DEEPSPEED_REPO=$six_ALL_CCFRWORK/code/tr1-13B/Megatron-DeepSpeed-tr1-13B/
VOCAB_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-vocab.json
MERGE_FILE=$MEGATRON_DEEPSPEED_REPO/data/gpt2-merges.txt
DATA_PATH=$six_ALL_CCFRWORK/datasets-custom/oscar-en/meg-gpt2_text_document
cd $MEGATRON_DEEPSPEED_REPO
MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=6000
GPUS_PER_NODE=4
NNODES=2 # switch to 64
TP_SIZE=2 # always fixed to the size of a single node
PP_SIZE=2 # NLAYERS must be a multiple of PP_SIZE here
#DP_SIZE=$NNODES*$GPUS_PER_NODE/($PP_SIZE*$TP_SIZE) # will get derived automatically by trainer
# GLOBAL_BATCH_SIZE has to be divisible by MICRO_BATCH_SIZE*DP_size
# GLOBAL_BATCH_SIZE=$(($MICRO_BATCH_SIZE*$GAS*$DP_SIZE)) - GAS is auto-derived by deepspeed
MICRO_BATCH_SIZE=1
GLOBAL_BATCH_SIZE=64
NLAYERS=8
NHIDDEN=512
NHEADS=8
FFN_HIDDEN_SIZE=2048
SEQ_LEN=512
VOCAB_SIZE=50257
SAVE_INTERVAL=2000
OPTIMIZER_ARGS=" \
--optimizer adam \
--adam-beta1 0.9 \
--adam-beta2 0.999 \
--adam-eps 1e-8 \
--lr 1e-4 \
--min-lr 1e-5 \
--lr-decay-style cosine \
--lr-decay-samples 126_953_125 \
--lr-warmup-samples 216_320 \
--clip-grad 1.0 \
--weight-decay 1e-1 \
"
EXIT_OPTS=" \
--exit-duration-in-mins 1190 \
"
GPT_ARGS=" \
--num-layers $NLAYERS \
--hidden-size $NHIDDEN \
--ffn-hidden-size $FFN_HIDDEN_SIZE \
--num-attention-heads $NHEADS \
--seq-length $SEQ_LEN \
--max-position-embeddings $SEQ_LEN \
--micro-batch-size $MICRO_BATCH_SIZE \
--rampup-batch-size 16 16 5_000_000 \
--global-batch-size $GLOBAL_BATCH_SIZE \
--train-samples 300_000_000 \
--vocab-file $VOCAB_FILE \
--merge-file $MERGE_FILE \
--loss-scale 12 \
--clip-grad 1.0 \
--fp16 \
--checkpoint-activations \
--seed 42
$OPTIMIZER_ARGS \
$EXIT_OPTS \
"
OUTPUT_ARGS=" \
--log-interval 10 \
--save-interval $SAVE_INTERVAL \
--eval-interval 1000 \
--eval-iters 5 \
--codecarbon-dir $CODECARBON_PATH \
--tensorboard-dir $TENSORBOARD_PATH \
--tensorboard-queue-size 5 \
--log-timers-to-tensorboard \
--log-batch-size-to-tensorboard \
--log-validation-ppl-to-tensorboard \
"
ZERO_STAGE=1
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $MICRO_BATCH_SIZE,
"train_batch_size": $GLOBAL_BATCH_SIZE,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": $ZERO_STAGE
},
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 500,
"hysteresis": 2,
"min_loss_scale": 1,
"initial_scale_power": 12
},
"steps_per_print": 2000,
"wall_clock_breakdown": false
}
EOT
DEEPSPEED_ARGS=" \
--deepspeed \
--deepspeed_config ${config_json} \
--zero-stage ${ZERO_STAGE} \
--deepspeed-activation-checkpointing \
"
export LAUNCHER="python -u -m torch.distributed.launch \
--nproc_per_node $GPUS_PER_NODE \
--nnodes $NNODES \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
"
# /usr/bin/env PYTHONPATH="." `pwd`/pretrain_gpt.py \
export CMD=" \
`pwd`/pretrain_gpt.py \
--tensor-model-parallel-size $TP_SIZE \
--pipeline-model-parallel-size $PP_SIZE \
$GPT_ARGS \
$OUTPUT_ARGS \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
$DEEPSPEED_ARGS \
"
echo $CMD
# to debug - add echo (it exits and prints what it would have launched)
clear; srun --jobid $SLURM_JOBID bash -c '$LAUNCHER --node_rank $SLURM_PROCID $CMD'
#2>&1 | tee -a $LOGS_PATH/main_log.txt
echo "END TIME: $(date)"
#