-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathelgato_report.py
660 lines (582 loc) · 18.5 KB
/
elgato_report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
#!/usr/bin/env python3
import sys
import json
import math
import argparse
from dataclasses import dataclass
from datetime import date
from fpdf import FPDF
from ctypes import alignment
LOGO="""\
/\\_/\\
( o.o )
> ^ <\
"""
summary_header = """\
Sequence Based Typing (SBT) is based on 7 __Legionella pneumophila__ loci (flaA, pilE, asd, mip, mompS, proA, neuA/neuAh). \
Each locus is assigned an allele number based on comparison of its sequence with sequences in an \
allele database. The allelic profile is the combination of allele numbers for all seven loci in order \
and denotes a unique Sequence Type (ST). el_gato utilizes either a genome assembly (.fasta) or \
Illumina paired-end reads (.fastq) to accomplish __Legionella pneumophila__ SBT. More information about each sample can \
be found in the log file generated by el_gato. \
"""
reads_header = """\
The following sample was analyzed using the paired-end reads functionality with el_gato version {}. The tables below show the full \
MLST profile of the sample, the coverage data for each locus, and information regarding the primers used to \
identify the primary mompS allele. Low depth bases indicate bases that do not have 10 or more reads covering \
that base (unless the default depth cutoff was adjusted). More information can be found in the log file for this sample. \
"""
assembly_header = """\
The following sample was analyzed using the assembly functionality with el_gato version {}. The tables below show the full \
MLST profile of the sample and the corresponding locus location information. Unless specified by the user, \
el_gato utilizes a default 30% (0.3) BLAST hit length threshold and a 95% (95.0) sequence identity threshold \
to identify the presence of multiple copies of an allele. el_gato will only report allele matches for BLAST hits \
of 100% length and 100% identity. More information can be found in the log file for this sample. \
"""
default_report_header = """\
El_gato Reports
Used for Batch and Sample-Level Summaries
Developed by Applied Bioinformatics Laboratory
(ABiL)
https://github.com/appliedbinf/el_gato\
"""
abbrev_key = """\
Novel ST = the alleles for all 7 loci were identified, however their unique combination and corresponding ST has not been found in the database. \n
Novel ST* = an exact match for sequences of at least one locus was not identified in the database, which may indicate a novel allele. \n
MA? = **m**ultiple **a**lleles; for at least one locus, multiple alleles were identified, and the true allele could not be resolved; therefore, no ST could be determined. \n
MD- = **m**issing **d**ata; data were missing for at least one locus (e.g., low read coverage at one or more position, missing sequence in assembly); therefore, no ST could be determined. \n
'-' = missing data; data were missing for this locus (e.g., low read coverage at one or more position, missing sequence in assembly); therefore, an allele number could not be determined. \n
'NAT' = **n**ovel **a**llele **t**ype; this locus did not match any allele listed in the database, possibly indicating a novel allele. \n
'?' = multiple alleles; for this locus multiple alleles were identified, and could not be resolved.\
"""
primer_footer = """\
"NA" indicates that primer support was not assessed since only one mompS allele was identified. Otherwise, the primary mompS allele is identified using the following criteria: \n
1. Only one allele has associated reads with the correctly oriented primers. \n
2. One allele has more than 3 times as many reads with the correctly oriented primer as the other. \n
3. One allele has no associated reads with the primer in either orientation, but the other has reads with the primer only in the wrong direction. The sequence with no associated reads is considered the primary locus in this case. \n
4. Absence of any primer-associated reads does not allow identification of the primary allele.\
"""
disclaimer = """\
This test has not been cleared or approved by the FDA. The performance characteristics have been established \
by the Respiratory Diseases Branch. The results are intended for public health purposes only and must NOT be \
communicated to the patient, their care provider, or placed in the patient's medical record. These results should \
NOT be used for diagnosis, treatment, or assessment of patient health or management. Reference Value: Not applicable. \
"""
github_url = """ \
https://github.com/appliedbinf/el_gato \
"""
@dataclass
class Report(FPDF):
sample_id: str
st: str
flaA: str
pilE: str
asd: str
mip: str
mompS: str
proA: str
neuA_neuAH: str
mode: str
mode_specific: dict
version: str
shorten_names: bool=False
@classmethod
def from_json(cls, json_data, shorten_names=False):
sample_id = json_data["id"]
st = json_data["mlst"]["st"]
flaA = json_data["mlst"]["flaA"]
pilE = json_data["mlst"]["pilE"]
asd = json_data["mlst"]["asd"]
mip = json_data["mlst"]["mip"]
mompS = json_data["mlst"]["mompS"]
proA = json_data["mlst"]["proA"]
neuA_neuAH = json_data["mlst"]["neuA_neuAH"]
mode = json_data["operation_mode"]
mode_specific = json_data["mode_specific"]
version = json_data.get("version", "UNKNOWN")
x = cls(
sample_id,
st,
flaA,
pilE,
asd,
mip,
mompS,
proA,
neuA_neuAH,
mode,
mode_specific,
version,
shorten_names,
)
return x
def list_mlst(self):
sample_id = self.sample_id
if self.shorten_names:
if len(self.sample_id) > 23:
sample_id = self.sample_id[:20] + "..."
return [
sample_id,
self.st,
self.flaA,
self.pilE,
self.asd,
self.mip,
self.mompS,
self.proA,
self.neuA_neuAH
]
def sample_report(
self,
pdf,
typeface='Courier',
body_style='',
body_size=11,
head_style='B',
head_size=16
):
pdf.add_page()
pdf.set_font(typeface, head_style, head_size)
if self.mode == "Assembly":
pdf = self.assembly_report(pdf, typeface, body_style, body_size)
elif self.mode == "Reads":
pdf = self.reads_report(pdf, typeface, body_style, body_size)
else:
sys.exit(
f"Unsupported operation mode identified for sample {self.sample_id}"
)
return pdf
def reads_report(self, pdf, typeface, style, size):
pdf.set_font(typeface, style, size)
pdf.set_font('Courier', 'B', 10)
pdf.multi_cell(
h=4,w=0,
text="Epidemiology of __Legionella__: Genome-based Typing (el_gato) Paired-End Reads Report",
align="C",
markdown=True
)
pdf.ln(10)
pdf.set_font('Courier', '', 11)
pdf.multi_cell(
h=4, w=0,
text=f"**{self.sample_id} reads report**",
align="L",
markdown=True
)
pdf.ln(2)
pdf.multi_cell(
w=0,h=5,
text=reads_header.format(self.version),
new_x="LMARGIN", new_y="NEXT"
)
pdf.ln(10)
pdf = self.make_mlst_table(pdf, [self.list_mlst()], self.shorten_names)
pdf.ln(10)
pdf.set_font(style="BU")
pdf.cell(
w=0,h=10,
text=f"Locus Information",
new_x="LMARGIN", new_y="NEXT", align="C"
)
pdf.set_font()
pdf = self.read_coverage_table(pdf)
if pdf.head_spacing:
pdf.add_page()
else:
pdf.ln(10)
pdf.set_font(style="BU")
pdf.cell(
w=0,h=10,
text=f"mompS Primer Information",
new_x="LMARGIN", new_y="NEXT", align="C"
)
pdf.set_font()
pdf = self.mompS_primer_table(pdf)
pdf.ln(0)
pdf.multi_cell(
w=0, h=3.5,
text=primer_footer,
new_x="LMARGIN", new_y="NEXT"
)
return pdf
def read_coverage_table(self, pdf):
contents = [["Locus", "Percent Covered", "Mean Depth", "Minimum Depth", "Low depth bases"]]
contents += [
[
k,
f'{float(v["Percent_covered"]):.1f}' if "Percent_covered" in v else "-",
f'{float(v["Mean_depth"]):.1f}' if "Mean_depth" in v else "-",
f'{float(v["Min_depth"]):.1f}' if "Min_depth" in v else "-",
f'{float(v["Num_below_min_depth"]):.1f}' if "Num_below_min_depth" in v else "-"
] for k, v in self.mode_specific["locus_coverage"].items()]
col_widths = (37.5, 37.5, 37.5, 37.5, 37.5)
alignment = ("CENTER", "CENTER", "CENTER", "CENTER", "CENTER")
pdf = self.make_table(
pdf,
contents,
col_widths=col_widths,
text_align=alignment
)
return pdf
def mompS_primer_table(self, pdf):
contents = [["Allele", "Reads Indicating Primary", "Reads Indicating Secondary"]]
# Report no reads supporting either if the run failed and didn't output a reads result
null_primer_result = [["mompS_-", "0", "0"]]
contents += self.mode_specific.get("mompS_primers", null_primer_result)
col_widths = (50, 50, 50)
alignment = ("CENTER", "CENTER", "CENTER")
pdf = self.make_table(
pdf,
contents,
col_widths=col_widths,
text_align=alignment
)
pdf.ln(4)
return pdf
def assembly_report(self, pdf, typeface, style, size):
pdf.set_font(typeface, style, size)
pdf.set_font('Courier', 'B', 10)
pdf.multi_cell(
h=4,w=0,
text="Epidemiology of __Legionella__: Genome-based Typing (el_gato) Assembly Results",
align="C",
markdown=True
)
pdf.ln(10)
pdf.set_font('Courier', '', 11)
pdf.set_font(style="U")
pdf.multi_cell(
h=4, w=0,
text=f"**{self.sample_id.replace('_',' ')} genomic report**",
align="L",
markdown=True
)
pdf.set_font()
pdf.ln(2)
pdf.multi_cell(
w=0,h=5,
text=assembly_header.format(self.version),
new_x="LMARGIN", new_y="NEXT"
)
pdf.ln(10)
pdf = self.make_mlst_table(pdf, [self.list_mlst()], self.shorten_names)
pdf.ln(10)
pdf.set_font(style="BU")
pdf.cell(
w=0,h=10,
text=f"Locus Information",
new_x="LMARGIN", new_y="NEXT", align="C"
)
pdf.set_font()
pdf = self.locus_location_table(pdf)
return pdf
def locus_location_table(self, pdf):
header = [["locus", "allele", "contig", "start", "stop", "%length"]]
contents = []
x = 1
for k, v in self.mode_specific["BLAST_hit_locations"].items():
for row in v:
# set % length
p_length = 100*(int(row[-2])-int(row[-3])+1)/int(row[-1])
row[-1] = (f"{p_length:.1f}")
# shorten contig names if needed
if self.shorten_names:
if len(row[1]) > 28:
row[1] = row[1][:25] + "..."
contents.append([k] + v[0])
if len(v) > 1:
for row in v[1:]:
contents.append([""] + row)
col_widths = (20, 30, 50, 15, 15, 15)
alignment = ("CENTER", "CENTER", "CENTER", "CENTER", "CENTER", "CENTER")
content = [i for i in contents]
# if shortening names, don't adjust table for long lines
if self.shorten_names:
chars = 1000
else:
chars = 25
batches = self.fit_table(pdf, content, pdf.get_y(), chars)
# Add a header to each table
for i in range(len(batches)):
batches[i] = header + batches[i]
pdf = self.make_table(
pdf,
batches[0],
col_widths=col_widths,
text_align=alignment
)
if len(batches) > 1:
for batch in batches[1:]:
pdf.add_page()
pdf.set_y(pdf.get_y() + 10)
pdf = self.make_table(
pdf,
batch,
col_widths=col_widths,
text_align=alignment
)
pdf.ln(4)
pdf.cell(
w=0,h=2,
text=r"% Length = BLAST hit length as a percent of expected locus size.",
new_x="LMARGIN", new_y="NEXT"
)
return pdf
def split_highlight_batches(self, batches, highlight_rows):
highlight_list = []
for batch in batches:
size = len(batch)
highlight_list.append(set([i for i in highlight_rows if i <= size]))
highlight_rows = [i-size for i in highlight_rows if i-size > 0]
return highlight_list
@staticmethod
def make_table(pdf, data, col_widths=None, text_align=None, highlight_rows=set()):
with pdf.table(
col_widths=col_widths,
text_align=text_align,
#borders_layout="MINIMAL"
) as table:
for n, data_row in enumerate(data):
row = table.row()
if n in highlight_rows:
pdf.set_fill_color(243, 177, 170)
else:
pdf.set_fill_color(0, 0, 0)
for item in data_row:
row.cell(item)
pdf.set_fill_color(0, 0, 0)
return pdf
@staticmethod
def fit_table(pdf, data, initial_y, characters:int):
font_size = pdf.font_size
pdf_y = initial_y
n = 0
max_length = 0
batches = []
this_batch = []
while n < len(data):
row = data[n]
for i in row:
column_length = len(i)
if column_length > max_length:
max_length = column_length
num_lines = math.ceil(max_length / characters)
cell_height = 2* num_lines * font_size
if pdf_y + cell_height + 10 > pdf.page_break_trigger:
batches.append(this_batch)
this_batch = [row]
n+=1
pdf_y = pdf.head_spacing # Whatever we want the starting y position to be on a new page
continue
n+=1
pdf_y += cell_height
this_batch.append(row)
batches.append(this_batch)
return batches
@staticmethod
def make_mlst_table(pdf, data, shorten_names=False):
contents = [["Sample ID","ST","flaA","pilE","asd","mip","mompS","proA","neuA"]]
for sample in data:
if shorten_names:
# Make sure sample id is fewer than XXX characters
s_name = sample[0]
if len(s_name) > 23:
sample[0] = s_name[0:20] + "..."
contents.append(sample)
col_widths = (60, 18, 18, 18, 18, 18, 18, 18, 18)
alignment = ("CENTER", "CENTER", "CENTER", "CENTER", "CENTER", "CENTER", "CENTER", "CENTER", "CENTER")
pdf = Report.make_table(pdf, contents, col_widths=col_widths, text_align=alignment)
return pdf
@staticmethod
def read_jsons(files, shorten_names=False):
data = []
for file in files:
with open(file) as fin:
json_data = json.load(fin)
data.append(Report.from_json(json_data, shorten_names))
return data
@staticmethod
def read_multi_json(files, shorten_names=False):
data = []
with open(files) as fin:
json_data = json.load(fin)
for i in json_data:
data.append(Report.from_json(i, shorten_names))
return data
class PDF_no_header(FPDF):
def __init__(self, disclaimer=False, *args, **kwargs):
super().__init__(*args, **kwargs)
self.head_spacing = 0
self.disclaimer = disclaimer
def footer(self):
if self.disclaimer:
# Position cursor at 1.5 cm from bottom:
self.set_y(-30)
# Setting font: helvetica italic 8
self.set_font("Courier", "", 8)
self.multi_cell(0, None, disclaimer, align="C")
# Position cursor at 1.5 cm from bottom:
self.set_y(-15)
# Setting font: helvetica italic 8
self.set_font("Courier", "", 8)
# Printing page number:
self.cell(0, 10, f"{date.today().isoformat()}", align="L")
self.cell(0, 10, f"Page {self.page_no()}/{{nb}}", align="R")
class PDF_with_header(PDF_no_header):
def __init__(self, header_text="", *args, **kwargs):
super().__init__(*args, **kwargs)
self.header_text = header_text
self.head_spacing = self.calc_head_size()
def header(self):
self.set_font('Courier', '', 10)
self.multi_cell(h=3,w=0, text=self.header_text, align="C")
self.ln(2)
def calc_head_size(self):
header_lines = self.header_text.split("\n")
newlines = len(header_lines) -1
for line in header_lines:
if len(line) < 91:
continue
newlines += len(line)//91
return newlines * 5
help_message= """
usage: elgato_report.py [-h] -i INPUT_JSONS [INPUT_JSONS ...] -o OUT_REPORT [-s]
options:
-h, --help show this help message and exit
-i, --input_jsons path to one or more report.json files
-o, --out_report desired output pdf file path
-s, --shorten_names shorten long sample and contig names to prevent line wrapping
-n, --no_header Do not include the header in the report
-d, --disclaimer Include disclaimer in footer
--custom_header Provide custom header as string in your command
--header_file Provide custom header in a text file
"""
class Parser(argparse.ArgumentParser):
"""Custom class to allow complete control over help message"""
def print_help(self):
print(help_message)
def parse_args():
p = Parser(
formatter_class=argparse.RawDescriptionHelpFormatter,
add_help=False
)
p.add_argument(
"-i", "--input_jsons",
required = True,
nargs="+",
help=""
)
p.add_argument(
"-o", "--out_report",
required = True,
help=""
)
p.add_argument(
"-s", "--shorten_names",
required = False,
help="",
action="store_true"
)
p.add_argument(
"-n", "--no_header",
required = False,
help="",
action="store_true"
)
p.add_argument(
"-d", "--disclaimer",
required = False,
help="",
action="store_true"
)
p.add_argument(
"--custom_header",
required = False,
type=str,
help=""
)
p.add_argument(
"--header_file",
required = False,
help=""
)
p.add_argument(
"-h", "--help",
action="help"
)
return p.parse_args()
def main():
args = parse_args()
if args.custom_header and args.header_file:
sys.exit("ERROR: You provided both a header file and a header string.\nPlease only provide one of a header file or a header string.")
with open(args.input_jsons[0]) as fin:
if fin.read().startswith("["):
data = Report.read_multi_json(args.input_jsons[0], args.shorten_names)
else:
data = Report.read_jsons(args.input_jsons, args.shorten_names)
report_header = default_report_header
if args.custom_header:
report_header = args.custom_header.encode("utf-8").decode('unicode_escape')
if args.header_file:
with open(args.header_file) as fin:
report_header = fin.read()
if args.no_header:
pdf = PDF_no_header(disclaimer, 'P', 'mm', 'Letter')
else:
pdf = PDF_with_header(report_header, args.disclaimer, 'P', 'mm', 'Letter')
pdf.add_page()
pdf.set_font('Courier', 'B', 10)
# pdf.cell(100)
pdf.multi_cell(
h=4, w=0,
text="Epidemiology of __Legionella__: Genome-based Typing (el_gato) Batch Results Report",
align="C",
markdown=True
)
pdf.ln(2)
pdf.set_font('Courier', '', 16)
pdf.multi_cell(w=0,h=6, text=LOGO, new_x="LMARGIN", new_y="NEXT")
pdf.ln(4)
pdf.set_font('Courier', '', 11)
pdf.set_font(style="U")
pdf.multi_cell(
h=4, w=0,
text="**Report Summary**",
align="L",
markdown=True
)
pdf.set_font()
pdf.ln(2)
pdf.multi_cell(w=0,h=5, text=summary_header, new_x="LMARGIN", new_y="NEXT",
markdown=True)
pdf.ln(2)
content = [i.list_mlst() for i in data]
# if shortening names, don't adjust table for long lines
if args.shorten_names:
chars = 1000
else:
chars = 19
batches = Report.fit_table(pdf, content, pdf.get_y(), chars)
for batch in batches:
if batch != batches[-1]:
pdf.set_font('Courier', '', 11)
pdf = Report.make_mlst_table(pdf, batch, args.shorten_names)
pdf.add_page()
pdf.ln(10)
else:
pdf.set_font('Courier', '', 11)
pdf = Report.make_mlst_table(pdf, batch, args.shorten_names)
pdf.ln(5)
if pdf.get_y() + 50 > pdf.page_break_trigger:
pdf.add_page()
pdf.ln(10)
pdf.set_font(style="U")
pdf.cell(w=0,h=0, text="Abbreviation Key", new_x="LMARGIN", new_y="NEXT")
pdf.ln(5)
pdf.set_font()
pdf.multi_cell(w=0,h=3.5, text=abbrev_key, new_x="LMARGIN", new_y="NEXT", markdown=True)
for datum in data:
pdf = datum.sample_report(pdf)
pdf.output(args.out_report)
if __name__ == '__main__':
main()