-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain_lstm.lua
340 lines (304 loc) · 13.4 KB
/
train_lstm.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
require 'torch'
require 'nn'
require 'nngraph'
require 'optim'
require 'lfs'
require 'gnuplot'
require 'util.print'
require 'util.misc'
local MODEL_ID = torch.randn(1)[1]
local model_utils = require 'util.model_utils'
local LSTM = require 'modules.LSTM'
local EEGMinibatchLoader = require 'util.EEGMinibatchLoader'
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a character-level language model')
cmd:text()
cmd:text('Options')
-- data
cmd:option('-data_dir','data/preprocessed','data directory')
cmd:option('-prepro_dir','data/torch','torch data directory')
-- model params
cmd:option('-rnn_size', 128, 'size of LSTM internal state')
cmd:option('-num_layers', 2, 'number of layers in the LSTM')
-- optimization
cmd:option('-optim_algo','rmsprop','optimization algorithm')
cmd:option('-learning_rate',2e-3,'learning rate')
cmd:option('-learning_rate_decay',0.97,'learning rate decay')
cmd:option('-learning_rate_decay_after',10,'in number of epochs, when to start decaying the learning rate')
cmd:option('-decay_rate',0.95,'decay rate for rmsprop')
cmd:option('-dropout',0,'dropout for regularization, used after each RNN hidden layer. 0 = no dropout')
cmd:option('-seq_length',250,'number of timesteps to unroll for')
cmd:option('-batch_size',50,'number of sequences to train on in parallel')
cmd:option('-max_epochs',30,'number of full passes through the training data')
cmd:option('-grad_clip',5,'clip gradients at this value')
cmd:option('-test_files',2,'numer of files that go into test set')
cmd:option('-val_files',3,'numer of files that go into validation set')
-- remaining files will be used for training
cmd:option('-init_from', '', 'initialize network parameters from checkpoint at this path')
-- bookkeeping
cmd:option('-seed',123,'torch manual random number generator seed')
cmd:option('-print_every',1,'how many steps/minibatches between printing out the loss')
cmd:option('-eval_val_every',1000,'every how many iterations should we evaluate on validation data?')
cmd:option('-checkpoint_dir', 'cv', 'output directory where checkpoints get written')
cmd:option('-savefile','lstm','filename to autosave the checkpont to. Will be inside checkpoint_dir/')
-- GPU/CPU
cmd:option('-gpuid',0,'which gpu to use. -1 = use CPU')
cmd:text()
-- parse input params
opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
-- initialize cunn/cutorch for training on the GPU and fall back to CPU gracefully
if opt.gpuid >= 0 then
local ok, cunn = pcall(require, 'cunn')
local ok2, cutorch = pcall(require, 'cutorch')
if not ok then printRed('package cunn not found!') end
if not ok2 then printRed('package cutorch not found!') end
if ok and ok2 then
printGreen('using CUDA on GPU ' .. opt.gpuid .. '...')
cutorch.setDevice(opt.gpuid + 1) -- note +1 to make it 0 indexed! sigh lua
cutorch.manualSeed(opt.seed)
else
printYellow('If cutorch and cunn are installed, your CUDA toolkit may be improperly configured.')
printYellow('Check your CUDA toolkit installation, rebuild cutorch and cunn, and try again.')
printYellow('Falling back on CPU mode')
opt.gpuid = -1 -- overwrite user setting
end
end
-- create the data loader class
local loader = EEGMinibatchLoader.create(opt)
-- define the model: prototypes for one timestep, then clone them in time
local do_random_init = true
local start_iter = 1
local forget_gates = {}
if string.len(opt.init_from) > 0 then
print('loading an LSTM from checkpoint ' .. opt.init_from)
local checkpoint = torch.load(opt.init_from)
protos = checkpoint.protos
-- overwrite model settings based on checkpoint to ensure compatibility
print('overwriting rnn_size=' .. checkpoint.opt.rnn_size .. ', num_layers=' .. checkpoint.opt.num_layers .. ' based on the checkpoint.')
opt.rnn_size = checkpoint.opt.rnn_size
opt.num_layers = checkpoint.opt.num_layers
start_iter = checkpoint.i
do_random_init = false
loader.file_idx = checkpoint.loader.file_idx
loader.batch_idx = checkpoint.loader.batch_idx
loader:refresh()
train_losses = checkpoint.train_losses
train_losses_avg = {}
for i = 1, #train_losses do
train_losses_avg[i] = calculate_avg_loss(sliceTable(train_losses, i))
end
val_losses = checkpoint.val_losses
else
print('creating an LSTM with ' .. opt.rnn_size .. ' units in ' .. opt.num_layers .. ' layers')
protos = {}
protos.rnn, forget_gates = LSTM.lstm(loader.input_dim, loader.label_dim, opt.rnn_size, opt.num_layers, opt.dropout) -- TODO: set proper size
protos.criterion = nn.BCECriterion()
end
-- the initial state of the cell/hidden states
init_state = {}
for L=1,opt.num_layers do
local h_init = torch.zeros(opt.batch_size, opt.rnn_size)
if opt.gpuid >=0 then h_init = h_init:cuda() end
table.insert(init_state, h_init:clone())
table.insert(init_state, h_init:clone())
end
-- ship the model to the GPU if desired
if opt.gpuid >= 0 then
for k,v in pairs(protos) do v:cuda() end
end
-- put the above things into one flattened parameters tensor
params, grad_params = model_utils.combine_all_parameters(protos.rnn)
-- initialization
if do_random_init then
params:uniform(-0.08, 0.08) -- small numbers uniform
for i = 1, #forget_gates do -- initialize forget gate bias
forget_gates[i].data.module.bias:sub(opt.rnn_size + 1, opt.rnn_size * 2):fill(1.5)
end
end
print('number of parameters in the model: ' .. params:nElement())
-- make a bunch of clones after flattening, as that reallocates memory
clones = {}
for name,proto in pairs(protos) do
print('cloning ' .. name)
clones[name] = model_utils.clone_many_times(proto, opt.seq_length) -- NOTE: deleted , not proto.parameters)
end
-- evaluate the loss over an entire split
function eval_split(split_index)
print('evaluating loss over split index ' .. split_index)
loader:reset_batch_pointer(split_index) -- move batch iteration pointer for this split to front
local loss = 0
local rnn_state = {[0] = init_state}
-- TODO: dirty hack. will work as long as there are less then 1e6 batches in a file
function get_batch_id()
return loader.file_idx[split_index] * 1e6 + loader.batch_idx[split_index]
end
-- iterate over batches in the split
local ct = 0
local last_batch_id = -1
while get_batch_id() > last_batch_id do
last_batch_id = get_batch_id()
-- fetch a batch
local x, y = loader:next_batch(split_index)
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
end
-- forward pass
for t=1,opt.seq_length do
clones.rnn[t]:evaluate() -- for dropout proper functioning
local lst = clones.rnn[t]:forward{x[{{}, t, {}}], unpack(rnn_state[t-1])}
rnn_state[t] = {}
for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end
prediction = lst[#lst]
loss = loss + clones.criterion[t]:forward(prediction, y[{{}, t, {}}])
end
-- carry over lstm state
rnn_state[0] = rnn_state[#rnn_state]
ct = ct + 1
if ct % 10 == 0 then
print('Evaluated: ' .. ct .. 'batches')
end
end
loss = loss / opt.seq_length / ct
return loss
end
-- do fwd/bwd and return loss, grad_params
local init_state_global = clone_list(init_state)
function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
------------------ get minibatch -------------------
local x, y = loader:next_batch(1)
if opt.gpuid >= 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
end
------------------- forward pass -------------------
local rnn_state = {[0] = init_state_global}
local predictions = {} -- softmax outputs
local loss = 0
for t=1,opt.seq_length do
clones.rnn[t]:training() -- make sure we are in correct mode (this is cheap, sets flag)
local lst = clones.rnn[t]:forward{x[{{}, t, {}}], unpack(rnn_state[t-1])}
rnn_state[t] = {}
for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end -- extract the state, without output
predictions[t] = lst[#lst] -- last element is the prediction
-- if t % 25 == 0 then
-- local str = ''
-- for i = 1,6 do
-- str = str .. string.format('%.2f ', predictions[t][1][i])
-- end
-- str = str .. '\n'
-- for i = 1,6 do
-- str = str .. string.format('%.2f ', y[{{}, t, {}}][1][i])
-- end
-- print(str .. '| ' .. t)
-- end
loss = loss + clones.criterion[t]:forward(predictions[t], y[{{}, t, {}}])
end
loss = loss / opt.seq_length
------------------ backward pass -------------------
-- initialize gradient at time t to be zeros (there's no influence from future)
local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones
for t=opt.seq_length,1,-1 do
-- backprop through loss, and softmax/linear
local doutput_t = clones.criterion[t]:backward(predictions[t], y[{{}, t, {}}])
table.insert(drnn_state[t], doutput_t)
local dlst = clones.rnn[t]:backward({x[{{}, t, {}}], unpack(rnn_state[t-1])}, drnn_state[t])
drnn_state[t-1] = {}
for k,v in pairs(dlst) do
if k > 1 then -- k == 1 is gradient on x, which we dont need
-- note we do k-1 because first item is dembeddings, and then follow the
-- derivatives of the state, starting at index 2. I know...
drnn_state[t-1][k-1] = v
end
end
end
------------------------ misc ----------------------
-- transfer final state to initial state (BPTT)
-- clip gradient element-wise
grad_params:div(opt.seq_length)
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
init_state_global = clone_list(rnn_state[opt.seq_length])
return loss, grad_params
end
-- start optimization here
train_losses = train_losses or {}
train_losses_avg = train_losses_avg or {}
val_losses = val_losses or {}
local optim_fun, optim_state
if opt.optim_algo == 'rmsprop' then
optim_fun = optim.rmsprop
optim_state = {learningRate = opt.learning_rate, alpha = opt.decay_rate}
elseif opt.optim_algo == 'adadelta' then
optim_fun = optim.adadelta
optim_state = {rho = 0.95, eps = 1e-7}
end
local iterations = opt.max_epochs * loader.total_samples
local loss0 = nil
for i = start_iter, iterations do
local epoch = i / loader.total_samples
local timer = torch.Timer()
local _, loss = optim_fun(feval, params, optim_state)
local time = timer:time().real
local train_loss = loss[1] -- the loss is inside a list, pop it
train_losses[i] = train_loss
train_losses_avg[i] = calculate_avg_loss(train_losses)
if i % opt.print_every == 0 then
local grad_norm = grad_params:norm()
local param_norm = params:norm()
print(string.format("%d/%d (epoch %.3f), train_loss = %6.8f, grad/param norm = %6.4e, param norm = %.2e time/batch = %.2fs",
i, iterations, epoch, train_loss, grad_norm / param_norm, param_norm, time))
local ct = 0;
local xAxis = torch.Tensor(#train_losses_avg):apply(function() ct = ct + 1; return ct; end)
gnuplot.plot(xAxis, torch.Tensor(train_losses_avg))
end
-- exponential learning rate decay
if i % (math.floor(loader.total_samples) / 2) == 0 and opt.learning_rate_decay < 1 then
if epoch >= opt.learning_rate_decay_after then
local decay_factor = opt.learning_rate_decay
optim_state.learningRate = optim_state.learningRate * decay_factor -- decay it
print('decayed learning rate by a factor ' .. decay_factor .. ' to ' .. optim_state.learningRate)
end
end
-- every now and then or on last iteration
if i % opt.eval_val_every == 0 or i == iterations then
-- evaluate loss on validation data
local val_loss = eval_split(2) -- 2 = validation
val_losses[i] = val_loss
local savefile = string.format('%s/lm_%s_epoch%.4f_%.2f.t7', opt.checkpoint_dir, opt.savefile, val_loss, epoch)
printGreen('saving checkpoint to ' .. savefile)
local checkpoint = {}
checkpoint.protos = protos
checkpoint.type = "lstm"
checkpoint.opt = opt
checkpoint.train_losses = train_losses
checkpoint.val_loss = val_loss
checkpoint.val_losses = val_losses
checkpoint.i = i
checkpoint.epoch = epoch
checkpoint.loader = {}
checkpoint.loader.file_idx = loader.file_idx
checkpoint.loader.batch_idx = loader.batch_idx
checkpoint.id = MODEL_ID
torch.save(savefile, checkpoint)
end
if i % 10 == 0 then collectgarbage() end
-- handle early stopping if things are going really bad
if loss[1] ~= loss[1] then
print('loss is NaN. This usually indicates a bug. Please check the issues page for existing issues, or create a new issue, if none exist. Ideally, please state: your operating system, 32-bit/64-bit, your blas version, cpu/cuda/cl?')
break -- halt
end
if loss0 == nil then loss0 = train_losses[1] end
if train_losses[1] > loss0 * 3 then
print('loss is exploding, aborting.')
break -- halt
end
end
print 'TRAINING DONE'