-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
492 lines (435 loc) · 21.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import argparse
import os
import shutil
import time
from tkinter import E
import numpy as np
import copy
import wandb
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torchsummary import summary
import torch.nn.functional as F
import random
# Importing modules related to distributed processing
import torch.distributed as dist
from torch.multiprocessing import Process
from torch.autograd import Variable
from torch.multiprocessing import spawn
from tensorboardX import SummaryWriter
###########
from gossip import GossipDataParallel
from gossip import RingGraph, GridGraph, FullGraph, PetersenGraph, DyckGraph
from gossip import UniformMixing
from gossip import *
from models import *
from partition_data import *
parser = argparse.ArgumentParser(description='Propert ResNets for CIFAR10 in pytorch')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet', help = 'resnet or vgg or resquant' )
parser.add_argument('-depth', '--depth', default=20, type=int, help='depth of the resnet model')
parser.add_argument('--normtype', default='evonorm', help = 'none or batchnorm or groupnorm or evonorm' )
parser.add_argument('--data-dir', dest='data_dir', help='The directory used to save the trained models', default='../../data', type=str)
parser.add_argument('--dataset', dest='dataset', type=str, help='available datasets: cifar10, cifar100, imagenette, fmnist', default='cifar10')
parser.add_argument('--skew', default=1.0, type=float, help='parameter alpha that controls non-iidness')
parser.add_argument('--classes', default=10, type=int, help='number of classes in the dataset')
parser.add_argument('-b', '--batch-size', default=512, type=int, help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--gamma', default=1.0, type=float, metavar='AR', help='averaging rate')
parser.add_argument('--momentum', default=0.0, type=float, metavar='M', help='momentum')
parser.add_argument('-world_size', '--world_size', default=5, type=int, help='total number of nodes')
parser.add_argument('--epochs', default=200, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--scaling', default=0.9, type=float, help='scaling factor for the bias correction term')
parser.add_argument('--graph', '-g', default='ring', help = 'graph structure - [ring, torus, dyck, peterson, full]' )
parser.add_argument('--neighbors', default=2, type=int, help='number of neighbors per node')
parser.add_argument('-d', '--devices', default=4, type=int, help='number of gpus/devices on the card')
parser.add_argument('-j', '--workers', default=4, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--seed', default=1234, type=int, help='set seed')
parser.add_argument('--print-freq', '-p', default=100, type=int, help='print frequency (default: 50)')
parser.add_argument('--save-dir', dest='save_dir', help='The directory used to save the trained models', default='outputs', type=str)
parser.add_argument('--port', dest='port', help='between 3000 to 65000',default='25500' , type=str)
parser.add_argument('--save-every', dest='save_every', help='Saves checkpoints at every specified number of epochs', type=int, default=5)
parser.add_argument('--nesterov', action='store_true', )
args = parser.parse_args()
# Check the save_dir exists or not
args.save_dir = os.path.join(args.save_dir, args.arch+"_nodes_"+str(args.world_size)+"_"+ args.normtype+"_lr_"+ str(args.lr)+"_seed_"+str(args.seed)+"_skew_"+str(args.skew)+"_"+args.graph )
if not os.path.exists(os.path.join(args.save_dir, "excel_data") ):
os.makedirs(os.path.join(args.save_dir, "excel_data") )
torch.save(args, os.path.join(args.save_dir, "training_args.bin"))
def partition_trainDataset(device):
"""Partitioning dataset"""
if args.dataset == 'cifar10':
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
classes = 10
class_size = {x:5000 for x in range(10)}
dataset = datasets.CIFAR10(root=args.data_dir, train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True)
elif args.dataset == 'cifar100':
normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408],
std=[0.2675, 0.2565, 0.2761])
classes = 100
class_size = {x:500 for x in range(100)}
dataset = datasets.CIFAR100(root=args.data_dir, train=True, transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, 4),
transforms.ToTensor(),
normalize,
]), download=True)
elif args.dataset == 'fmnist':
normalize = transforms.Normalize((0.5,), (0.5,))
classes = 10
class_size = {x:6000 for x in range(10)}
dataset = datasets.FashionMNIST(root=args.data_dir, train = True, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]), download=True)
elif args.dataset == 'imagenette':
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
classes = 10
class_size = {0: 963, 1: 955, 2: 993, 3: 858, 4: 941, 5: 956, 6: 961, 7: 931, 8: 951, 9: 960}
data_transforms = transforms.Compose([transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(), normalize,])
data_dir = args.data_dir
dataset = datasets.ImageFolder(os.path.join(data_dir, 'train'), data_transforms)
size = dist.get_world_size()
#print(size)
bsz = int((args.batch_size) / float(size))
partition_sizes = [1.0/size for _ in range(size)]
partition = DataPartitioner(args.seed, dataset, partition_sizes, non_iid_alpha=args.skew, partition_type="non_iid_dirichlet")
partition, data_distribution = partition.use(dist.get_rank())
train_set = torch.utils.data.DataLoader(partition, batch_size=bsz, shuffle=True, num_workers=2)
return train_set, bsz, data_distribution
def test_Dataset():
if args.dataset=='cifar10':
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
dataset = datasets.CIFAR10(root=args.data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
elif args.dataset=='cifar100':
normalize = transforms.Normalize(mean=[0.5071, 0.4867, 0.4408],
std=[0.2675, 0.2565, 0.2761])
dataset = datasets.CIFAR100(root=args.data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
elif args.dataset=='fmnist':
normalize = transforms.Normalize((0.5,), (0.5,))
dataset = datasets.FashionMNIST(root=args.data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(),
normalize,
]))
elif args.dataset == 'imagenette':
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
data_transforms = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(), normalize,])
data_dir = args.data_dir
dataset = datasets.ImageFolder(os.path.join(data_dir, 'val'), data_transforms)
val_bsz = 128
val_set = torch.utils.data.DataLoader(dataset, batch_size=val_bsz, shuffle=False, num_workers=2)
return val_set, val_bsz
def run(rank, size):
global args, best_prec1, global_steps
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#torch.use_deterministic_algorithms(True)
device = torch.device("cuda:{}".format(rank%args.devices))
##############
best_prec1 = 0
data_transferred = 0
if args.arch.lower()=='resnet':
model = resnet(num_classes=args.classes, depth=args.depth, dataset=args.dataset, norm_type=args.normtype, groups=2)
elif args.arch.lower() == 'vgg11':
model = vgg11(num_classes=args.classes, dataset=args.dataset, norm_type=args.normtype, groups=2)
elif args.arch.lower() == 'mobilenet':
model = MobileNetV2(num_classes=args.classes, dataset=args.dataset, norm_type=args.normtype, groups=2)
elif args.arch.lower() == 'lenet5':
model = LeNet5()
else:
raise NotImplementedError
if rank==0:
print(args)
print('Printing model summary...')
if args.dataset=="fmnist":
print(summary(model, (1,28,28), batch_size=int(args.batch_size/size), device='cpu'))
elif args.dataset=="imagenette":
print(summary(model, (3, 224, 224), batch_size=int(args.batch_size/size), device='cpu'))
else:
print(summary(model, (3, 32, 32), batch_size=int(args.batch_size/size), device='cpu'))
if args.graph.lower() == 'ring':
graph = RingGraph(rank, size, args.devices, peers_per_itr=args.neighbors) #undirected ring structure => neighbors = 2 ; directed ring => neighbors=1
elif args.graph.lower() == 'torus':
graph = GridGraph(rank, size, args.devices, peers_per_itr=args.neighbors) # torus graph structure
elif args.graph.lower() == 'petersen':
graph = PetersenGraph(rank, size, args.devices, peers_per_itr=3) # petersen graph structure -- cubic graph
elif args.graph.lower() == 'dyck':
graph = DyckGraph(rank, size, args.devices, peers_per_itr=3) # dyck graph structure -- cubic graph
elif args.graph.lower() == 'full':
graph = FullGraph(rank, size, args.devices, peers_per_itr=args.world_size-1) # torus graph structure
else:
raise NotImplementedError
#graph = BipartiteGraph(rank, size, args.devices, peers_per_itr=int(args.world_size/2)) #undirected bipartite structure, use only for even world size
mixing = UniformMixing(graph, device)
model = GossipDataParallel(model,
device_ids=[rank%args.devices],
rank=rank,
world_size=size,
graph=graph,
mixing=mixing,
comm_device=device,
eta = args.gamma,
momentum=args.momentum,
nesterov=args.nesterov,
weight_decay=0.0,
lr = args.lr,
neighbors = args.neighbors)
model.to(device)
train_loader, bsz_train, _ = partition_trainDataset(device=device)
val_loader, bsz_val = test_Dataset()
# define loss function (criterion) and nvidia-smi optimizer
tracker = GUT(model, device, rank, args.lr, args.gamma, neighbors=args.neighbors, momentum = args.momentum, scaling = args.scaling)
optimizer = optim.SGD(model.parameters(), args.lr, momentum=args.momentum, nesterov=args.nesterov)
if rank==0: print(optimizer)
criterion = nn.CrossEntropyLoss().to(device)
milestones = [int(args.epochs*0.5), int(args.epochs*0.75)]
lr_scheduler = optim.lr_scheduler.MultiStepLR(optimizer, gamma = 0.1, milestones=milestones)
lr = optimizer.param_groups[0]['lr']
for epoch in range(0, args.epochs):
print('current lr {:.5e}'.format(optimizer.param_groups[0]['lr']))
model.block()
dt, train_acc, train_loss, lr = train(train_loader, model, criterion, optimizer, epoch, lr, device, tracker)
data_transferred += dt
lr_scheduler.step()
prec1, loss = validate(val_loader, model, criterion, bsz_val,device, epoch)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, filename=os.path.join(args.save_dir, 'model_{}.th'.format(rank)))
#############################
dt = gossip_avg(train_loader, model, criterion, optimizer, epoch, optimizer.param_groups[0]['lr'], device)
print('Final test accuracy')
prec1_final, _ = validate(val_loader, model, criterion, bsz_val,device, epoch, False, args.classes, return_classwise=False)
print("Rank : ", rank, "Data transferred(in GB) during training: ", data_transferred/1.0e9, "Data transferred(in GB) in final gossip averaging rounds: ", dt/1.0e9, "\n")
#Store processed data
torch.save((prec1, prec1_final, (data_transferred+dt)/1.0e9), os.path.join(args.save_dir, "excel_data","rank_{}.sp".format(rank)))
def train(train_loader, model, criterion, optimizer, epoch, lr, device, tracker=None):
"""
Run one train epoch
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
data_transferred = 0
# switch to train mode
model.train()
end = time.time()
step = len(train_loader)*epoch
for i, (input, target) in enumerate(train_loader):
data_time.update(time.time() - end)
input_var, target_var = Variable(input).to(device), Variable(target).to(device)
# gossip the weights
_, amt_data_transfer, global_update, acc_y = model.transfer_params(epoch=epoch+(1e-3*i), lr=optimizer.param_groups[0]['lr'])
data_transferred += amt_data_transfer
#add gossip to compute gradients
model.gossip_averaging()
# compute output in the forward pass
output = model(input_var)
#compute loss
loss = criterion(output, target_var)
# compute gradient
loss.backward()
#remove gossip as it is added directly to the gradients in the tracker function
model.remove_gossip()
#update tracking variable
tracker(global_update, acc_y, optimizer.param_groups[0]['lr'])
tracker.modify_gradients()
# do local update
optimizer.step()
#zero out the gradients
optimizer.zero_grad()
#model.gossip_averaging()
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target_var)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Rank: {0}\t'
'Epoch: [{1}][{2}/{3}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
dist.get_rank(), epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
step += 1
return data_transferred, top1.avg, losses.avg, lr
def gossip_avg(train_loader, model, criterion, optimizer, epoch, lr, device):
"""
This function runs only gossip averaging for 50 iterations without local sgd updates - used to obtain the average model
"""
data_transferred = 0
n = 50
# switch to train mode
model.train()
for i, (input, target) in enumerate(train_loader):
input_var, target_var = Variable(input).to(device), Variable(target).to(device)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
loss.backward()
optimizer.zero_grad()
_, amt_data_transfer, _, _ = model.transfer_params(epoch=epoch+(1e-3*i), lr=lr)
model.gossip_averaging()
data_transferred += amt_data_transfer
if i==n: break
return data_transferred
def validate(val_loader, model, criterion, batch_size, device, epoch=0, class_wise=False, list_of_classes=10, return_classwise=False):
"""
Run evaluation
"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
step = len(val_loader)*epoch
acc = [0 for c in range(list_of_classes)]
class_count = [0 for c in range(list_of_classes)]
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
input_var, target_var = Variable(input).to(device), Variable(target).to(device)
# compute output and loss
output = model(input_var)
loss = criterion(output, target_var)
output = output.float()
loss = loss.float()
# measure accuracy and record loss
prec1 = accuracy(output.data, target_var)[0]
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if class_wise:
_, preds = torch.max(output.data, 1)
for c in range(list_of_classes):
acc[c] += ((preds == target_var) * (target_var == c)).sum().float()
class_count[c] += (target_var == c).sum()
if i % args.print_freq == 0:
print('Rank: {0}\t'
'Test: [{1}/{2}]\t'
#'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
dist.get_rank(),i, len(val_loader),
#batch_time=batch_time,
loss=losses,
top1=top1))
step += 1
print('Rank:{0}, Prec@1 {top1.avg:.3f}'.format(dist.get_rank(),top1=top1))
if class_wise:
for c in range(list_of_classes):
acc[c] = (acc[c].cpu().numpy()/class_count[c].cpu().numpy())*100
print('Class-wise accuracy for rank {} is '.format(dist.get_rank()), acc)
if return_classwise:
return top1.avg, acc
return top1.avg, losses.avg
def save_checkpoint(state, filename='checkpoint.pth.tar'):
"""
Save the training model
"""
torch.save(state, filename)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def flatten_tensors(tensors):
if len(tensors) == 1:
return tensors[0].view(-1).clone()
flat = torch.cat([t.contiguous().view(-1) for t in tensors], dim=0)
return flat
def init_process(rank, size, fn, backend='nccl'):
"""Initialize distributed enviornment"""
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = args.port
dist.init_process_group(backend, rank=rank, world_size=size)
fn(rank,size)
if __name__ == '__main__':
size = args.world_size
spawn(init_process, args=(size, run), nprocs=size, join=True)
#read stored data
excel_data = {
'data': args.dataset,
'arch': args.arch,
"momentum":args.momentum,
"nesterov":args.nesterov,
"learning rate": args.lr,
"gamma" : args.gamma,
"graph" : args.graph,
"skew" : args.skew,
"norm" : args.normtype,
"epochs": args.epochs,
"nodes": size,
"avg test acc":[0.0 for _ in range(size)],
"avg test acc final":[0.0 for _ in range(size)],
"data transferred": [0.0 for _ in range(size)],
"seed" :args.seed,
"scaling": args.scaling,
'depth':args.depth,
}
for i in range(size):
acc, acc_final, d_tfr = torch.load(os.path.join( args.save_dir, "excel_data","rank_{}.sp".format(i) ))
excel_data["avg test acc"][i] = acc
excel_data["avg test acc final"][i] = acc_final
excel_data["data transferred"][i] = d_tfr
torch.save(excel_data, os.path.join(args.save_dir, "excel_data","dict"))