-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathl16-timing-attacks.html
549 lines (504 loc) · 24.6 KB
/
l16-timing-attacks.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
<h1>Side-channel attacks on RSA</h1>
<p><strong>Note:</strong> These lecture notes were slightly modified from the ones posted on the 6.858 <a href="http://css.csail.mit.edu/6.858/2014/schedule.html">course website</a> from 2014.</p>
<h2>Side channel attacks</h2>
<ul>
<li>Historically, worried about EM signals leaking. <a href="http://cryptome.org/nsa-tempest.pdf">NSA TEMPEST</a>.</li>
<li>Broadly, systems may need to worry about many unexpected ways in which</li>
<li>information can be revealed.</li>
</ul>
<p><em>Example setting:</em> a server (e.g., Apache) has an RSA private key.</p>
<ul>
<li>Server uses RSA private key (e.g., decrypt message from client).</li>
<li>Something about the server's computation is leaked to the client.</li>
</ul>
<p>Many information leaks have been looked at:</p>
<ul>
<li>How long it takes to decrypt.</li>
<li>How decryption affects shared resources (cache, TLB, branch predictor).</li>
<li>Emissions from the CPU itself (RF, audio, power consumption, etc).</li>
</ul>
<p>Side-channel attacks don't have to be crypto-related.</p>
<ul>
<li>E.g., operation time relates to which character of password was incorrect.</li>
<li>Or time related to how many common friends you + some user have on Facebook.</li>
<li>Or how long it takes to load a page in browser (depends if it was cached).</li>
<li>Or recovering printed text based on sound from dot-matrix printer.
<a href="https://www.usenix.org/conference/usenixsecurity10/acoustic-side-channel-attacks-printers">Ref</a></li>
<li>But attacks on passwords or keys are usually the most damaging.</li>
</ul>
<p>Adversary can analyze information leaks, use it to reconstruct private key.</p>
<ul>
<li>Currently, side-channel attacks on systems described in the paper are rare.
<ul>
<li>E.g., Apache web server running on some Internet-connected machine.</li>
<li>Often some other vulnerability exists and is easier to exploit.</li>
<li>Slowly becoming a bigger concern: new side-channels (VMs), better attacks.</li>
</ul></li>
<li>Side-channel attacks are more commonly used to attack trusted/embedded hw.
<ul>
<li>E.g., chip running cryptographic operations on a smartcard.</li>
<li>Often these have a small attack surface, not many other ways to get in.</li>
<li>As paper mentions, some crypto coprocessors designed to avoid this attack.</li>
</ul></li>
</ul>
<p>What's the <em>"Remote timing attacks are practical"</em> paper's contribution? <a href="http://css.csail.mit.edu/6.858/2014/readings/brumley-timing.pdf">Ref</a></p>
<ul>
<li>Timing attacks known for a while.</li>
<li>This paper: possible to attack standard Apache web server over the network.</li>
<li>Uses lots of observations/techniques from prior work on timing attacks.</li>
<li>To understand how this works, first let's look at some internals of RSA..</li>
</ul>
<h2>RSA: high level plan</h2>
<ul>
<li>Pick two random primes, <code>p</code> and <code>q</code>.
<ul>
<li>Let <code>n = p*q</code>.</li>
</ul></li>
<li>A reasonable key length, i.e., <code>|n|</code> or <code>|d|</code>, is 2048 bits today.</li>
<li>Euler's function <code>phi(n)</code>: number of elements of <code>Z_n^*</code> relatively prime to <code>n</code>.
<ul>
<li><strong>Theorem</strong> [no proof here]: <code>a^(phi(n)) = 1 mod n</code>, for all <code>a</code> and <code>n</code>.</li>
</ul></li>
<li>So, how to encrypt and decrypt?
<ul>
<li>Pick two exponents <code>d</code> and <code>e</code>, such that <code>m^(e*d) = m (mod n)</code>, which
<ul>
<li>means <code>e*d = 1 mod phi(n)</code>.</li>
</ul></li>
<li>Encryption will be <code>c = m^e (mod n)</code>; decryption will be <code>m = c^d (mod n)</code>.</li>
</ul></li>
<li>How to get such <code>e</code> and <code>d</code>?
<ul>
<li>For <code>n=pq</code>, <code>phi(n) = (p-1)(q-1)</code>.</li>
<li>Easy to compute <code>d=1/e</code>, if we know <code>phi(n)</code>.
<a href="http://en.wikipedia.org/wiki/Modular_multiplicative_inverse">Extended Euclidean algorithm</a></li>
<li>In practice, pick small <code>e</code> (e.g., 65537), to make encryption fast.</li>
</ul></li>
<li>Public key is <code>(n, e)</code>.</li>
<li>Private key is, in principle, <code>(n, d)</code>.
<ul>
<li><strong>Note:</strong> <code>p</code> and <code>q</code> must be kept secret!</li>
<li>Otherwise, adversary can compute <code>d</code> from <code>e</code>, as we did above.</li>
<li>Knowing <code>p</code> and <code>q</code> also turns out to be helpful for fast decryption.</li>
<li>So, in practice, private key includes <code>(p, q)</code> as well.</li>
</ul></li>
</ul>
<p>RSA is tricky to use "securely" -- be careful if using RSA directly!</p>
<ul>
<li>Ciphertexts are multiplicative
<ul>
<li><code>E(a)*E(b) = a^e * b^e = (ab)^e</code>.</li>
<li>Can allow adversary to manipulate encryptions, generate new ones.</li>
</ul></li>
<li>RSA is deterministic
<ul>
<li>Encrypting the same plaintext will generate the same ciphertext each time.</li>
<li>Adversary can tell when the same thing is being re-encrypted.</li>
</ul></li>
<li>Typically solved by "padding" messages before encryption.
<a href="http://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding">OAEP</a>
<ul>
<li>Take plaintext message bits, add padding bits before and after plaintext.</li>
<li>Encrypt the combined bits (must be less than <code>|n|</code> bits total).</li>
<li>Padding includes randomness, as well as fixed bit patterns.</li>
<li>Helps detect tampering (e.g. ciphertext multiplication).</li>
</ul></li>
</ul>
<h2>How to implement RSA?</h2>
<ul>
<li><strong>Key problem:</strong> fast modular exponentiation.
<ul>
<li>In general, quadratic complexity.</li>
</ul></li>
<li>Multiplying two 1024-bit numbers is slow.</li>
<li>Computing the modulus for 1024-bit numbers is slow (1024-bit divison).</li>
</ul>
<h3>Optimization 1: Chinese Remainder Theorem (CRT).</h3>
<ul>
<li>Recall what the CRT says:
<ul>
<li>if <code>x==a1 (mod p)</code> and <code>x==a2 (mod q)</code>, where <code>p</code> and <code>q</code> are relatively prime,</li>
<li>then there's a unique solution <code>x==a (mod pq)</code>.
<ul>
<li>and, there's an efficient algorithm for computing <code>a</code></li>
</ul></li>
</ul></li>
<li>Suppose we want to compute <code>m = c^d (mod pq)</code>.</li>
<li>Can compute <code>m1 = c^d (mod p)</code>, and <code>m2 = c^d (mod q)</code>.</li>
<li>Then use CRT to compute <code>m = c^d (mod n)</code> from <code>m1</code>, <code>m2</code>; it's unique and fast.</li>
<li>Computing <code>m1</code> (or <code>m2</code>) is ~4x faster than computing <code>m</code> directly (~quadratic).</li>
<li>Computing <code>m</code> from <code>m1</code> and <code>m2</code> using CRT is ~negligible in comparison.</li>
<li>So, roughly a 2x speedup.</li>
</ul>
<h3>Optimization 2: Repeated squaring and Sliding windows.</h3>
<ul>
<li>Naive approach to computing <code>c^d</code>: multiply <code>c</code> by itself, <code>d</code> times.</li>
<li>Better approach, called repeated squaring:
<ul>
<li><code>c^(2x) = (c^x)^2</code></li>
<li><code>c^(2x+1) = (c^x)^2 * c</code></li>
<li>To compute <code>c^d</code>, first compute <code>c^(floor(d/2))</code>, then use above for <code>c^d</code>.</li>
<li>Recursively apply until the computation hits <code>c^0 = 1</code>.</li>
<li>Number of squarings: <code>|d|</code> (the number of bits needed to represent <code>d</code>)</li>
<li>Number of multiplications: number of 1 bits in <code>d</code></li>
</ul></li>
<li>Better yet (sometimes), called <em>sliding window</em>:
<ul>
<li><code>c^(2x) = (c^x)^2</code></li>
<li><code>c^(32x+1) = (c^x)^32 * c</code></li>
<li><code>c^(32x+3) = (c^x)^32 * c^3</code></li>
<li>...</li>
<li><code>c^(32x+z) = (c^x)^32 * c^z</code>, generally (where <code>z<=31</code>)</li>
<li>Can pre-compute a table of all necessary <code>c^z</code> powers, store in memory.</li>
<li>The choice of power-of-2 constant (e.g., 32) depends on usage.
<ul>
<li>Costs: extra memory, extra time to pre-compute powers ahead of time.</li>
</ul></li>
<li>Note: only pre-compute odd powers of <code>c</code> (use first rule for even).</li>
<li>OpenSSL uses 32 (table with 16 pre-computed entries).</li>
</ul></li>
</ul>
<h3>Optimization 3: Montgomery representation.</h3>
<ul>
<li>Reducing <code>mod p</code> each time (after square or multiply) is expensive.
<ul>
<li>Typical implementation: do long division, find remainder.</li>
<li>Hard to avoid reduction: otherwise, value grows exponentially.</li>
</ul></li>
<li>Idea (by Peter Montgomery): do computations in another representation.
<ul>
<li>Shift the base (e.g., <code>c</code>) into different representation upfront.</li>
<li>Perform modular operations in this representation (will be cheaper).</li>
<li>Shift numbers back into original representation when done.</li>
<li>Ideally, savings from reductions outweigh cost of shifting.</li>
</ul></li>
<li>Montgomery representation: multiply everything by some factor R.
<ul>
<li><code>a mod q <-> aR mod q</code></li>
<li><code>b mod q <-> bR mod q</code></li>
<li><code>c = a*b mod q <-> cR mod q = (aR * bR)/R mod q</code></li>
<li>Each mul (or sqr) in Montgomery-space requires division by <code>R</code>.</li>
</ul></li>
<li>Why is modular multiplication cheaper in Montgomery repr.?
<ul>
<li>Choose <code>R</code> so division by <code>R</code> is easy: <code>R = 2^|q|</code> (<code>2^512</code> for 1024-bit keys).</li>
<li>Because we divide by <code>R</code>, we will often not need to do <code>mod q</code>.
<ul>
<li><code>|aR| = |q|</code></li>
<li><code>|bR| = |q|</code></li>
<li><code>|aR * bR| = 2|q|</code></li>
<li><code>|aR * bR / R| = |q|</code></li>
</ul></li>
<li>How do we divide by <code>R</code> cheaply?
<ul>
<li>Only works if lower bits are zero.</li>
</ul></li>
<li><em>Observation:</em> since we care about value <code>mod q</code>, multiples of <code>q</code> don't matter.</li>
<li><em>Trick:</em> add multiples of <code>q</code> to the number being divided by <code>R</code>, make low bits 0.
<ul>
<li>For example, suppose <code>R=2^4 (10000)</code>, <code>q=7 (111)</code>, divide <code>x=26 (11010)</code> by R.</li>
<li><code>x+2q = (binary) * 101000</code></li>
<li><code>x+2q+8q = (binary) 1100000</code></li>
<li>Now, can easily divide by <code>R</code>: result is binary 110 (or 6).</li>
<li>Generally, always possible:</li>
<li>Low bit of <code>q</code> is 1 (<code>q</code> is prime), so can "shoot down" any bits.</li>
<li>To "shoot down" bit <code>k</code>, add <code>2^k * q</code></li>
<li>To shoot down low-order bits <code>l</code>, add <code>q*(l*(-q^-1) mod R)</code></li>
<li>Then, dividing by <code>R</code> means simply discarding low zero bits.</li>
</ul></li>
</ul></li>
<li><em>One remaining problem:</em> result will be <code>< R</code>, but might be <code>> q</code>.
<ul>
<li>If the result happens to be greater than <code>q</code>, need to subtract <code>q</code>.</li>
<li>This is called the "extra reduction".</li>
<li>When computing <code>x^d mod q</code>, <code>Pr[extra reduction] = (x mod q) / 2R</code>.
<ul>
<li>Here, <code>x</code> is assumed to be already in Montgomery form.</li>
<li><em>Intuition:</em> as we multiply bigger numbers, will overflow more often.</li>
</ul></li>
</ul></li>
</ul>
<h3>Optimization 4: Efficient multiplication.</h3>
<ul>
<li>How to multiply 512-bit numbers?</li>
<li>Representation: break up into 32-bit values (or whatever hardware supports).</li>
<li>Naive approach: pair-wise multiplication of all 32-bit components.
<ul>
<li>Same as if you were doing digit-wise multiplication of numbers on paper.</li>
<li>Requires <code>O(nm)</code> time if two numbers have <code>n</code> and <code>m</code> components respectively.</li>
<li><code>O(n^2)</code> if the two numbers are close.</li>
</ul></li>
<li><strong>Karatsuba multiplication:</strong> assumes both numbers have same number of components.
<ul>
<li><code>O(n^log_3(2)) = O(n^1.585)</code>time.</li>
<li>Split both numbers (<code>x</code> and <code>y</code>) into two components (<code>x1</code>, <code>x0</code> and <code>y1</code>, <code>y0</code>).
<ul>
<li><code>x = x1 * B + x0</code></li>
<li><code>y = y1 * B + y0</code></li>
<li>E.g., <code>B=2^32</code> when splitting 64-bit numbers into 32-bit components.</li>
</ul></li>
<li>Naive: <code>x*y = x1y1 * B^2 + x0y1 * B + x1y0 * B + x0y0</code>
<ul>
<li>Four multiplies: <code>O(n^2)</code></li>
</ul></li>
<li>Faster: <code>x*y = x1y1 * (B^2+B) - (x1-x0)(y1-y0) * B + x0y0 * (B+1)</code>
<ul>
<li>... <code>= x1y1 * B^2 + ( -(x1-x0)(y1-y0) + x1y1 + x0y0 ) * B + x0y0</code></li>
<li>Just three multiplies, and a few more additions.</li>
</ul></li>
<li>Recursively apply this algorithm to keep splitting into more halves.
<ul>
<li>Sometimes called "recursive multiplication".</li>
</ul></li>
<li>Meaningfully faster (no hidden big constants)
<ul>
<li>For 1024-bit keys, "<code>n</code>" here is 16 (512/32).</li>
<li><code>n^2 = 256</code></li>
<li><code>n^1.585 = 81</code></li>
</ul></li>
</ul></li>
<li>Multiplication algorithm needs to decide when to use Karatsuba vs. Naive.
<ul>
<li>Two cases matter: <em>two large numbers</em>, and <em>one large + one small number</em>.</li>
<li>OpenSSL: if equal number of components, use Karatsuba, otherwise Naive.</li>
<li>In some intermediate cases, Karatsuba may win too, but OpenSSL ignores it,
<ul>
<li>according to this paper.</li>
</ul></li>
</ul></li>
</ul>
<h2>How does SSL use RSA?</h2>
<ul>
<li>Server's SSL certificate contains public key.</li>
<li>Server must use private key to prove its identity.</li>
<li>Client sends random bits to server, encrypted with server's public key.</li>
<li>Server decrypts client's message, uses these bits to generate session key.
<ul>
<li>In reality, server also verifies message padding.</li>
<li>However, can still measure time until server responds in some way.</li>
</ul></li>
</ul>
<p>Figure of <strong>decryption pipeline</strong> on the server:</p>
<pre><code> * CRT * To Montgomery * Modular exp
--> * c_0 = c mod q --> * c'_0 = c_0*R mod q --> * m'_0 = (c'_0)^d mod q
/
/ * Use sliding window for bits
/ * of the exponent d
c * Karatsuba if c'_0 and q have
* same number of 32-bit parts
\
\ * Extra reductions proportional
\ * to ((c'_0)^z mod q) / 2R;
--> ... * z comes from sliding window
</code></pre>
<ul>
<li>Then, compute <code>m_0 = m'_0/R mod q</code>.</li>
<li>Then, combine <code>m_0</code> and <code>m_1</code> using CRT to get <code>m</code>.</li>
<li>Then verify padding in <code>m</code>.</li>
<li>Finally, use payload in some way (SSL, etc).</li>
</ul>
<h2>Setup for the attack described in Brumley's paper</h2>
<ul>
<li>Victim Apache HTTPS web server using OpenSSL, has private key in memory.</li>
<li>Connected to Stanford's campus network.</li>
<li>Adversary controls some client machine on campus network.</li>
<li>Adversary sends specially-constructed ciphertext in msg to server.
<ul>
<li>Server decrypts ciphertext, finds garbage padding, returns an error.</li>
<li>Client measures response time to get error message.</li>
<li>Uses the response time to guess bits of <code>q</code>.</li>
</ul></li>
<li>Overall response time is on the order of 5 msec.
<ul>
<li>Time difference between requests can be around 10 usec.</li>
</ul></li>
<li>What causes time variations?
<ul>
<li>Karatsuba vs. Naive</li>
<li>extra reductions</li>
</ul></li>
<li>Once guessed enough bits of <code>q</code>, can factor <code>n=p*q</code>, compute <code>d</code> from <code>e</code>.</li>
<li>About 1M queries seem enough to obtain 512-bit <code>p</code> and <code>q</code> for 1024-bit key.
<ul>
<li>Only need to guess the top 256 bits of <code>p</code> and <code>q</code>, then use another algorithm.</li>
</ul></li>
</ul>
<h2>Attack from Brumley's paper</h2>
<ul>
<li>See the <em>Remote timing attacks are practical</em> paper cited in the <em>References</em> section at the end for more details.</li>
<li>Let <code>q = q_0 q_1 .. q_N</code>, where <code>N = |q|</code> (say, 512 bits for 1024-bit keys).</li>
<li>Assume we know some number <code>j</code> of high-order bits of <code>q</code> (<code>q_0</code> through <code>q_j</code>).</li>
<li>Construct two approximations of q, guessing <code>q_{j+1}</code> is either 0 or 1:
<ul>
<li><code>g = q_0 q_1 .. q_j 0 0 0 .. 0</code></li>
<li><code>g_hi = q_0 q_1 .. q_j 1 0 0 .. 0</code></li>
</ul></li>
<li>Get the server to perform modular exponentiation (<code>g^d</code>) for both guesses.
<ul>
<li>We know <code>g</code> is necessarily less than <code>q</code>.</li>
<li>If <code>g</code> and <code>g_hi</code> are both less than <code>q</code>, time taken shouldn't change much.</li>
<li>If <code>g_hi</code> is greater than <code>q</code>, time taken might change noticeably.
<ul>
<li><code>g_hi mod q</code> is small.</li>
<li>Less time: fewer extra reductions in Montgomery.</li>
<li>More time: switch from Karatsuba to normal multiplication.</li>
</ul></li>
<li>Knowing the time taken can tell us if 0 or 1 was the right guess.</li>
</ul></li>
<li>How to get the server to perform modular exponentiation on our guess?
<ul>
<li>Send our guess as if it were the encryption of randomness to server.</li>
<li>One snag: server will convert our message to Montgomery form.</li>
<li>Since Montgomery's <code>R</code> is known, send (<code>g/R mod n</code>) as message to server.</li>
</ul></li>
<li>How do we know if the time difference should be positive or negative?
<ul>
<li>Paper seems to suggest it doesn't matter: just look for large diff.</li>
<li>Figure 3a shows the measured time differences for each bit's guess.</li>
<li>Karatsuba vs. normal multiplication happens at 32-bit boundaries.</li>
<li>First 32 bits: extra reductions dominate.</li>
<li>Next bits: Karatsuba vs normal multiplication dominates.</li>
<li>At some point, extra reductions start dominating again.</li>
</ul></li>
<li>What happens if the time difference from the two effects cancels out?
<ul>
<li>Figure 3, key 3.</li>
<li>Larger neighborhood changes the balance a bit, reveals a non-zero gap.</li>
</ul></li>
<li>How does the paper get accurate measurements?
<ul>
<li>Client machine uses processor's timestamp counter (<code>rdtsc</code> on x86).</li>
<li>Measure several times, take the median value.
<ul>
<li>Not clear why median; min seems like it would be the true compute time.</li>
</ul></li>
<li>One snag: relatively few multiplications by <code>g</code>, due to sliding windows.</li>
<li>Solution: get more multiplications by values close to <code>g</code> (+ same for <code>g_hi</code>).</li>
<li>Specifically, probe a "neighborhood" of <code>g</code> (<code>g, g+1, .., g+400</code>).</li>
</ul></li>
<li>Why probe a 400-value neighborhood of <code>g</code> instead of measuring <code>g</code> 400 times?
<ul>
<li>Consider the kinds of noise we are trying to deal with.</li>
<li>(1) Noise unrelated to computation (e.g. interrupts, network latency).
<ul>
<li>This might go away when we measure the same thing many times.</li>
<li>See Figure 2a in the paper.</li>
</ul></li>
<li>(2) "Noise" related to computation.
<ul>
<li>E.g., multiplying by <code>g^3</code> and <code>g_hi^3</code> in sliding window takes diff time.</li>
<li>Repeated measurements will return the same value.</li>
<li>Will not help determine whether mul by <code>g</code> or <code>g_hi</code> has more reductions.</li>
<li>See Figure 2b in the paper.</li>
</ul></li>
<li>Neighborhood values average out 2nd kind of noise.</li>
<li>Since neighborhood values are nearby, still has ~same # reductions.</li>
</ul></li>
</ul>
<h2>How to avoid these attacks?</h2>
<ul>
<li>Timing attack on decryption time: RSA blinding.
<ul>
<li>Choose random <code>r</code>.</li>
<li>Multiply ciphertext by <code>r^e mod n</code>: <code>c' = c*r^e mod n</code>.</li>
<li>Due to multiplicative property of RSA, <code>c'</code> is an encryption of <code>m*r</code>.</li>
<li>Decrypt ciphertext <code>c'</code> to get message <code>m'</code>.</li>
<li>Divide plaintext by <code>r</code>: <code>m = m'/r</code>.</li>
<li>About a 10% CPU overhead for OpenSSL, according to Brumley's paper.</li>
</ul></li>
<li>Make all code paths predictable in terms of execution time.
<ul>
<li>Hard, compilers will strive to remove unnecessary operations.</li>
<li>Precludes efficient special-case algorithms.</li>
<li>Difficult to predict execution time: instructions aren't fixed-time.</li>
</ul></li>
<li>Can we take away access to precise clocks?
<ul>
<li>Yes for single-threaded attackers on a machine we control.</li>
<li>Can add noise to legitimate computation, but attacker might average.</li>
<li>Can quantize legitimate computations, at some performance cost.</li>
<li>But with "sleeping" quantization, throughput can still leak info.</li>
</ul></li>
</ul>
<h3>How worried should we be about these attacks?</h3>
<ul>
<li>Relatively tricky to develop an exploit (but that's a one-time problem).</li>
<li>Possible to notice attack on server (many connection requests).
<ul>
<li>Though maybe not so easy on a busy web server cluster?</li>
</ul></li>
<li>Adversary has to be close by, in terms of network.
<ul>
<li>Not that big of a problem for adversary.</li>
<li>Can average over more queries, co-locate nearby (Amazon EC2),
<ul>
<li>Run on a nearby bot or browser, etc.</li>
</ul></li>
</ul></li>
<li>Adversary may need to know the version, optimization flags, etc of OpenSSL.
<ul>
<li>Is it a good idea to rely on such a defense?</li>
<li>How big of an impediment is this?</li>
</ul></li>
<li>If adversary mounts attack, effects are quite bad (key leaked).</li>
</ul>
<h2>Other types of timing attacks</h2>
<ul>
<li><strong>Page-fault timing for password guessing</strong> [Tenex system]
<ul>
<li>Suppose the kernel provides a system call to check user's password.
<ul>
<li>Checks the password one byte at a time, returns error when finds mismatch.</li>
</ul></li>
<li>Adversary aligns password, so that first byte is at the end of a page,
<ul>
<li>Rest of password is on next page.</li>
</ul></li>
<li>Somehow arrange for the second page to be swapped out to disk.
<ul>
<li>Or just unmap the next page entirely (using equivalent of <code>mmap</code>).</li>
</ul></li>
<li>Measure time to return an error when guessing password.
<ul>
<li>If it took a long time, kernel had to read in the second page from disk.
<ul>
<li>Or, if unmapped, if crashed, then kernel tried to read second page. ]</li>
</ul></li>
<li>Means first character was right!</li>
</ul></li>
<li>Can guess an <code>N</code>-character password in <code>256*N</code> tries, rather than <code>256^N</code>.</li>
</ul></li>
<li><strong>Cache analysis attacks:</strong> processor's cache shared by all processes.
<ul>
<li>E.g.: accessing one of the sliding-window multiples brings it in cache.</li>
<li>Necessarily evicts something else in the cache.</li>
<li>Malicious process could fill cache with large array, watch what's evicted.</li>
<li>Guess parts of exponent (<code>d</code>) based on offsets being evicted.</li>
</ul></li>
<li>Cache attacks are potentially problematic with "mobile code".
<ul>
<li>NaCl modules, Javascript, Flash, etc running on your desktop or phone.</li>
</ul></li>
<li><strong>Network traffic timing / analysis attacks</strong>.
<ul>
<li>Even when data is encrypted, its ciphertext size remains ~same as plaintext.</li>
<li>Recent papers show can infer a lot about SSL/VPN traffic by sizes, timing.</li>
<li>E.g., Fidelity lets customers manage stocks through an SSL web site.
<ul>
<li>Web site displays some kind of pie chart image for each stock.</li>
<li>User's browser requests images for all of the user's stocks.</li>
<li>Adversary can enumerate all stock pie chart images, knows sizes.</li>
<li>Can tell what stocks a user has, based on sizes of data transfers.</li>
</ul></li>
<li>Similar to CRIME attack mentioned in guest lecture earlier this term.</li>
</ul></li>
</ul>
<h2>References</h2>
<ul>
<li><a href="http://css.csail.mit.edu/6.858/2014/readings/brumley-timing.pdf">Remote timing attacks are practical</a></li>
<li><a href="http://css.csail.mit.edu/6.858/2014/readings/ht-cache.pdf">Cache missing for fun and profit</a></li>
<li><a href="http://www.tau.ac.il/~tromer/papers/cache-joc-20090619.pdf">Efficient Cache Attacks on AES, and Countermeasures</a></li>
<li><a href="http://www.tau.ac.il/~tromer/papers/handsoff-20140731.pdf">Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction Attacks on PCs</a></li>
<li><a href="http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf">Cross-VM Side Channels and Their Use to Extract Private Keys</a></li>
<li><a href="http://ed25519.cr.yp.to/">Ed25519: high-speed high-security signatures</a></li>
</ul>