-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
206 lines (154 loc) · 6.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import torch
from torch import nn
from torch import optim
from torch.autograd import Variable
from dataloader import *
from misc import *
from models import *
import pickle
from makeLabel import *
import os
## boolean variable indicating whether cuda is available
use_cuda = torch.cuda.is_available()
makeDir()
moveFiles()
dataloader = loadImgs()
## build model and use cuda if available
if use_cuda:
netE = Encoder().cuda()
netD_img = Dimg().cuda()
netD_z = Dz().cuda()
netG = Generator().cuda()
else:
netE = Encoder()
netD_img = Dimg()
netD_z = Dz()
netG = Generator()
## apply weight initialization
netE.apply(weights_init)
netD_img.apply(weights_init)
netD_z.apply(weights_init)
netG.apply(weights_init)
## build optimizer for each networks
optimizerE = optim.Adam(netE.parameters(),lr=0.0002,betas=(0.5,0.999))
optimizerD_z = optim.Adam(netD_z.parameters(),lr=0.0002,betas=(0.5,0.999))
optimizerD_img = optim.Adam(netD_img.parameters(),lr=0.0002,betas=(0.5,0.999))
optimizerG = optim.Adam(netG.parameters(),lr=0.0002,betas=(0.5,0.999))
## build criterions to calculate loss, and use cuda if available
if use_cuda:
BCE = nn.BCELoss().cuda()
L1 = nn.L1Loss().cuda()
CE = nn.CrossEntropyLoss().cuda()
MSE = nn.MSELoss().cuda()
else:
BCE = nn.BCELoss()
L1 = nn.L1Loss()
CE = nn.CrossEntropyLoss()
MSE = nn.MSELoss()
## fixed variables to regress / progress age
fixed_l = -torch.ones(80*10).view(80,10)
for i,l in enumerate(fixed_l):
l[i//8] = 1
fixed_l_v = Variable(fixed_l)
if use_cuda:
fixed_l_v = fixed_l_v.cuda()
outf='./result_tv_gender'
if not os.path.exists(outf):
os.mkdir(outf)
niter=50
for epoch in range(niter):
print("Epochs", epoch)
for i,(img_data,img_label) in enumerate(dataloader):
print("Data loaders - ", i)
# make image variable and class variable
img_data_v = Variable(img_data)
img_age = img_label/2
img_gender = img_label%2*2-1
img_age_v = Variable(img_age).view(-1,1)
img_gender_v = Variable(img_gender.float())
if epoch == 0 and i == 0:
fixed_noise = img_data[:8].repeat(10,1,1,1)
fixed_g = img_gender[:8].view(-1,1).repeat(10,1)
fixed_img_v = Variable(fixed_noise)
fixed_g_v = Variable(fixed_g)
pickle.dump(fixed_noise,open("fixed_noise.p","wb"))
if use_cuda:
fixed_img_v = fixed_img_v.cuda()
fixed_g_v = fixed_g_v.cuda()
if use_cuda:
img_data_v = img_data_v.cuda()
img_age_v = img_age_v.cuda()
img_gender_v = img_gender_v.cuda()
# make one hot encoding version of label
batchSize = img_data_v.size(0)
age_ohe = one_hot(img_age,batchSize,n_l,use_cuda)
# prior distribution z_star, real_label, fake_label
z_star = Variable(torch.FloatTensor(batchSize*n_z).uniform_(-1,1)).view(batchSize,n_z)
real_label = Variable(torch.ones(batchSize).fill_(1)).view(-1,1)
fake_label = Variable(torch.ones(batchSize).fill_(0)).view(-1,1)
if use_cuda:
z_star, real_label, fake_label = z_star.cuda(),real_label.cuda(),fake_label.cuda()
## train Encoder and Generator with reconstruction loss
netE.zero_grad()
netG.zero_grad()
# EG_loss 1. L1 reconstruction loss
z = netE(img_data_v)
reconst = netG(z,age_ohe,img_gender_v)
EG_L1_loss = L1(reconst,img_data_v)
# EG_loss 2. GAN loss - image
z = netE(img_data_v)
reconst = netG(z,age_ohe,img_gender_v)
D_reconst,_ = netD_img(reconst,age_ohe.view(batchSize,n_l,1,1),img_gender_v.view(batchSize,1,1,1))
G_img_loss = BCE(D_reconst,real_label)
## EG_loss 3. GAN loss - z
Dz_prior = netD_z(z_star)
Dz = netD_z(z)
Ez_loss = BCE(Dz,real_label)
## EG_loss 4. TV loss - G
reconst = netG(z.detach(),age_ohe,img_gender_v)
G_tv_loss = TV_LOSS(reconst)
EG_loss = EG_L1_loss + 0.0001*G_img_loss + 0.01*Ez_loss + G_tv_loss
EG_loss.backward()
optimizerE.step()
optimizerG.step()
## train netD_z with prior distribution U(-1,1)
netD_z.zero_grad()
Dz_prior = netD_z(z_star)
Dz = netD_z(z.detach())
Dz_loss = BCE(Dz_prior,real_label)+BCE(Dz,fake_label)
Dz_loss.backward()
optimizerD_z.step()
## train D_img with real images
netD_img.zero_grad()
D_img,D_clf = netD_img(img_data_v,age_ohe.view(batchSize,n_l,1,1),img_gender_v.view(batchSize,1,1,1))
D_reconst,_ = netD_img(reconst.detach(),age_ohe.view(batchSize,n_l,1,1),img_gender_v.view(batchSize,1,1,1))
D_loss = BCE(D_img,real_label)+BCE(D_reconst,fake_label)
D_loss.backward()
optimizerD_img.step()
## save fixed img for every 20 step
fixed_z = netE(fixed_img_v)
fixed_fake = netG(fixed_z,fixed_l_v,fixed_g_v)
vutils.save_image(fixed_fake.data,
'%s/reconst_epoch%03d.png' % (outf,epoch+1),
normalize=True)
## checkpoint
if epoch%10==0:
torch.save(netE.state_dict(),"%s/netE_%03d.pth"%(outf,epoch+1))
torch.save(netG.state_dict(),"%s/netG_%03d.pth"%(outf,epoch+1))
torch.save(netD_img.state_dict(),"%s/netD_img_%03d.pth"%(outf,epoch+1))
torch.save(netD_z.state_dict(),"%s/netD_z_%03d.pth"%(outf,epoch+1))
msg1 = "epoch:{}, step:{}".format(epoch+1,i+1)
msg2 = format("EG_L1_loss:%f"%(EG_L1_loss.data),"<30")+"|"+format("G_img_loss:%f"%(G_img_loss.data),"<30")
msg5 = format("G_tv_loss:%f"%(G_tv_loss.data),"<30")+"|"+"Ez_loss:%f"%(Ez_loss.data)
msg3 = format("D_img:%f"%(D_img.mean().data),"<30")+"|"+format("D_reconst:%f"%(D_reconst.mean().data),"<30")\
+"|"+format("D_loss:%f"%(D_loss.data),"<30")
msg4 = format("D_z:%f"%(Dz.mean().data),"<30")+"|"+format("D_z_prior:%f"%(Dz_prior.mean().data),"<30")\
+"|"+format("Dz_loss:%f"%(Dz_loss.data),"<30")
print()
print(msg1)
print(msg2)
print(msg5)
print(msg3)
print(msg4)
print()
print("-"*80)