-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCoShaRP.m
176 lines (140 loc) · 4.19 KB
/
CoShaRP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
function [zf,uf,hist] = CoShaRP(A,D,y,K,opt)
% CoShaRP provides shape coefficients by solving a convex program
%
% solves the following optimization problem:
%
% minimize || A*D*z - y ||_2
% subject to sum(z) == K, 0 <= z_i <= 1
%
% where A is a tomography matrix, D is a shape dictionary, y are the
% tomographic measurements, z are the shape coefficients, and K is the
% total number of shapes
%
% Usage:
% [z] = CoShaRP(A,D,y,K);
%
% Example:
% n = 128^2; % image size
% m = 1024; % measurements
% p = 10000; % dictionary elements
% K = 10; % number of shapes
% A = tomographyMatrix(m,n);
% D = dictionaryMatrix(n,p);
% zTrue = zeros(p,1);
% zTrue(randperm(p,K),1) = 1;
% xTrue = D*zTrue;
% y = A*xTrue;
% zCSR = CoShaRP(A,D,y,K);
%
% Input:
% A : tomography matrix of size m x n
% D : dictionary matrix of size n x p
% y : tomographic measurements of size m x 1
% K : number of shapes
% opt : structure with following options
% - MaxIter : maximum number of iterations
% - optTol : tolerance for optimality criterion
% - progTol : tolerance for progress of iterates
% - fTol : tolerance for function value
% - verbose : indicator to print the iterates
% - stochUp : indicator to update iterates stochastically
%
% Output:
% zf : final value of z variable (primal)
% uf : final value of dual variable
% hist : history (structure) consisting of following
% - f : function values at every iterates
% - pr : progress of iterates
% - opt: optimality value at every iterate
%
% Created by:
% Ajinkya Kadu
% Centrum Wiskunde & Informatica, Amsterdam
if nargin < 5
opt = [];
end
progTol = getoptions(opt,'progTol',1e-8);
optTol = getoptions(opt,'optTol',1e-8);
fTol = getoptions(opt,'fTol',1e-8);
MaxIter = getoptions(opt,'MaxIter',1e6);
verbose = getoptions(opt,'verbose',0);
stochUp = getoptions(opt,'stochUp',1); % stochastic update
%% pre-processing
[m,n] = size(A);
[n,p] = size(D);
AD = A*D; % store the total matrix
eD = normest(AD); % compute norm of the matrix
AD = AD/eD; % scale matrix by its norm
yD = y/eD; % scale corresponding measurments by norm of matrix
% acceleration factor
gamma = 0.95/sqrt(2);
%% initialize
z = zeros(p,1);
u = zeros(m,1);
v = zeros(p,1);
%% main loop
for i=1:MaxIter
% update z
zprev = z;
z = zprev - gamma*(AD'*u+v);
% update u
dz = zprev - 2*z;
uprev = u;
if stochUp % stochastic update
idx = randperm(m,10);
u(idx) = proxfs(uprev(idx) - gamma*(AD(idx,:)*dz),gamma,yD(idx));
else
u = proxfs(uprev - gamma*(AD*dz),gamma,yD);
end
% update v
vprev = v;
v = proxgs(vprev - gamma*dz,gamma,K);
% check optimality
hist.pr(i) = norm(z-zprev) + norm(u-uprev) + norm(v-vprev);
hist.f(i) = norm(AD*z-yD);
hist.opt(i)= norm(AD'*u+v);
if (hist.pr(i) < progTol) || (hist.opt(i) < optTol) || (hist.f(i) < fTol)
fprintf('iter %d: function:%2.2e progress:%2.2e opt:%2.2e\n',i,hist.f(i),hist.pr(i),hist.opt(i));
break;
end
if verbose && mod(i,floor(MaxIter/10))==0
fprintf('%5.0d \t %.6e \t %.6e \t %.6e \n',i,hist.f(i),...
hist.opt(i),hist.pr(i));
end
end
%%
zf = z;
uf = u;
end
function [z] = proxgs(x,gamma,K)
% proximal for dual of K-simplex constraints
z0 = proxg(x/gamma,1/gamma,K);
z = x - gamma*z0;
end
function [z,fc] = proxg(x,gamma,K)
% projection onto K-simplex (x^1 = K, 0 <= x <= 1 )
fh = @(mu) sum(min(max(x-mu,0),1)) - K;
c = fzero(fh,0);
fc= fh(c);
z = min(max(x-c,0),1);
end
function [z] = proxfs(x,gamma,y)
% proximal for dual of \ell_2 norm
z = x - gamma*proxf(x/gamma,1/gamma,y);
end
function [z] = proxf(x,gamma,y)
% proximal for \ell_2 norm (i.e., f(x) = ||x - y||_2)
normxy = norm(x-y);
z = (1 - gamma/max(normxy,gamma))*normxy + y;
end
function v = getoptions(options, name, v, mandatory)
% getoptions - retrieve options parameter
if nargin<4
mandatory = 0;
end
if isfield(options, name)
v = eval(['options.' name ';']);
elseif mandatory
error(['You have to provide options.' name '.']);
end
end