-
Notifications
You must be signed in to change notification settings - Fork 309
/
Copy pathtrain_prior.py
62 lines (59 loc) · 2.4 KB
/
train_prior.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import sys
from PIL import Image
import torch
from kandinsky2.model.model_creation import create_model, create_gaussian_diffusion
from kandinsky2.train_utils.train_module_pl2_1 import Decoder
import argparse
import os
from argparse import ArgumentParser
import pytorch_lightning as pl
from kandinsky2.train_utils.data.dataset_prior import create_loader
from kandinsky2.model.utils import get_obj_from_str
from kandinsky2.train_utils.trainer_prior import train_prior
from kandinsky2.model.resample import UniformSampler
from kandinsky2.model.prior import PriorDiffusionModel, CustomizedTokenizer
import argparse
from omegaconf import OmegaConf
import clip
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='config path')
args = parser.parse_args()
config = OmegaConf.load(args.config)
device = config['device']
clip_mean, clip_std = torch.load(
config["clip_mean_std_path"], map_location="cpu"
)
tokenizer = CustomizedTokenizer()
model = PriorDiffusionModel(
config['model_config'],
tokenizer,
clip_mean,
clip_std,
)
diffusion = model.create_prior_diffusion()
print('start loading')
if config['params_path'] != '':
model.load_state_dict(torch.load(config['params_path']))
model = model.to(device)
train_loader = create_loader(**config['data']['train'])
schedule_sampler = UniformSampler(diffusion)
optimizer = get_obj_from_str(config['optim_params']["name"])(
model.parameters(), **config['optim_params']["params"]
)
if 'scheduler_params' in config:
lr_scheduler = get_obj_from_str(config['scheduler_params']["name"])(
optimizer, **config['scheduler_params']["params"]
)
else:
lr_scheduler = None
clip_model, _ = clip.load(config['clip_name'], device="cpu", jit=False)
clip_model = clip_model.eval().to(device)
train_prior(model=model, diffusion=diffusion,
clip_model=clip_model, optimizer=optimizer,
lr_scheduler=lr_scheduler, schedule_sampler=schedule_sampler,
train_loader=train_loader, val_loader=None,
num_epochs=config['num_epochs'], save_every=config['save_every'], save_name=config['save_name'],
save_path=config['save_path'], device=device)
if __name__ == '__main__':
main()