-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_magicfu.py
319 lines (241 loc) · 12.1 KB
/
run_magicfu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# Copyright 2024 Adobe. All rights reserved.
#%%
import cv2
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from itertools import islice
from torch import autocast
import torchvision
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from torchvision.transforms import Resize
import argparse
import os
import pathlib
import glob
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def fix_img(test_img):
width, height = test_img.size
if width != height:
left = 0
right = height
bottom = height
top = 0
return test_img.crop((left, top, right, bottom))
else:
return test_img
# util funcs
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def get_tensor_clip(normalize=True, toTensor=True):
transform_list = []
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
transform_list += [torchvision.transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711))]
return torchvision.transforms.Compose(transform_list)
def get_tensor_dino(normalize=True, toTensor=True):
transform_list = [torchvision.transforms.Resize((224,224))]
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
transform_list += [lambda x: 255.0 * x[:3],
torchvision.transforms.Normalize(
mean=(123.675, 116.28, 103.53),
std=(58.395, 57.12, 57.375),
)]
return torchvision.transforms.Compose(transform_list)
def get_tensor(normalize=True, toTensor=True):
transform_list = []
if toTensor:
transform_list += [torchvision.transforms.ToTensor()]
if normalize:
transform_list += [torchvision.transforms.Normalize((0.5, 0.5, 0.5),
(0.5, 0.5, 0.5))]
transform_list += [
torchvision.transforms.Resize(512),
torchvision.transforms.CenterCrop(512)
]
return torchvision.transforms.Compose(transform_list)
def numpy_to_pil(images):
"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def load_model_from_config(config, ckpt, verbose=False):
model = instantiate_from_config(config.model)
# print('NOTE: NO CHECKPOINT IS LOADED')
if ckpt is not None:
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
# sd = pl_sd["state_dict"]
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def get_model(config_path, ckpt_path):
config = OmegaConf.load(f"{config_path}")
model = load_model_from_config(config, None)
pl_sd = torch.load(ckpt_path, map_location="cpu")
m, u = model.load_state_dict(pl_sd, strict=True)
if len(m) > 0:
print("WARNING: missing keys:")
print(m)
if len(u) > 0:
print("unexpected keys:")
print(u)
model = model.to(device)
return model
def get_grid(size):
y = np.repeat(np.arange(size)[None, ...], size)
y = y.reshape(size, size)
x = y.transpose()
out = np.stack([y,x], -1)
return out
def un_norm(x):
return (x+1.0)/2.0
class MagicFixup:
def __init__(self, model_path='/sensei-fs/users/halzayer/collage2photo/Paint-by-Example/official_checkpoint_image_attn_200k.pt'):
self.model = get_model('configs/collage_mix_train.yaml',model_path)
def edit_image(self, ref_image, coarse_edit, mask_tensor, start_step, steps):
# essentially sample
sampler = DDIMSampler(self.model)
start_code = None
transformed_grid = torch.zeros((2, 64, 64))
self.model.model.og_grid = None
self.model.model.transformed_grid = transformed_grid.unsqueeze(0).to(self.model.device)
scale = 1.0
C, f, H, W= 4, 8, 512, 512
n_samples = 1
ddim_steps = steps
ddim_eta = 1.0
step = start_step
with torch.no_grad():
with autocast("cuda"):
with self.model.ema_scope():
image_tensor = get_tensor(toTensor=False)(coarse_edit)
clean_ref_tensor = get_tensor(toTensor=False)(ref_image)
clean_ref_tensor = clean_ref_tensor.unsqueeze(0)
ref_tensor=get_tensor_dino(toTensor=False)(ref_image).unsqueeze(0)
b_mask = mask_tensor.cpu() < 0.5
# inpainting
reference = un_norm(image_tensor)
reference = reference.squeeze()
ref_cv = torch.moveaxis(reference, 0, -1).cpu().numpy()
ref_cv = (ref_cv * 255).astype(np.uint8)
cv_mask = b_mask.int().squeeze().cpu().numpy().astype(np.uint8)
kernel = np.ones((7,7))
dilated_mask = cv2.dilate(cv_mask, kernel)
dst = cv2.inpaint(ref_cv,dilated_mask,3,cv2.INPAINT_NS)
# dst = inpaint.inpaint_biharmonic(ref_cv, dilated_mask, channel_axis=-1)
dst_tensor = torch.tensor(dst).moveaxis(-1, 0) / 255.0
image_tensor = (dst_tensor * 2.0) - 1.0
image_tensor = image_tensor.unsqueeze(0)
ref_tensor = ref_tensor
inpaint_image = image_tensor#*mask_tensor
test_model_kwargs={}
test_model_kwargs['inpaint_mask']=mask_tensor.to(device)
test_model_kwargs['inpaint_image']=inpaint_image.to(device)
clean_ref_tensor = clean_ref_tensor.to(device)
ref_tensor=ref_tensor.to(device)
uc = None
if scale != 1.0:
uc = self.model.learnable_vector
c = self.model.get_learned_conditioning(ref_tensor.to(torch.float16))
c = self.model.proj_out(c)
z_inpaint = self.model.encode_first_stage(test_model_kwargs['inpaint_image'])
z_inpaint = self.model.get_first_stage_encoding(z_inpaint).detach()
z_ref = self.model.encode_first_stage(clean_ref_tensor)
z_ref = self.model.get_first_stage_encoding(z_ref).detach()
test_model_kwargs['inpaint_image']=z_inpaint
test_model_kwargs['inpaint_mask']=Resize([z_inpaint.shape[-2],z_inpaint.shape[-1]])(test_model_kwargs['inpaint_mask'])
shape = [C, H // f, W // f]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=c,
z_ref=z_ref,
batch_size=n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code,
test_model_kwargs=test_model_kwargs,
x0=z_inpaint,
x0_step=step,
ddim_discretize='uniform',
drop_latent_guidance=1.0
)
x_samples_ddim = self.model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image=x_samples_ddim
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
return x_checked_image_torch
#%%
#%%
import time
# %%
def file_exists(path):
""" Check if a file exists and is not a directory. """
if not os.path.isfile(path):
raise argparse.ArgumentTypeError(f"{path} is not a valid file.")
return path
def parse_arguments():
""" Parses command-line arguments. """
parser = argparse.ArgumentParser(description="Process images based on provided paths.")
parser.add_argument("--checkpoint", type=file_exists, required=True, help="Path to the MagicFixup checkpoint file.")
parser.add_argument("--reference", type=file_exists, default='examples/fox_drinking_og.png', help="Path to the reference original image.")
parser.add_argument("--edit", type=file_exists, default='examples/fox_drinking__edit__01.png', help="Path to the image edit. Make sure the alpha channel is set properly")
parser.add_argument("--output-dir", type=str, default='./outputs', help="Path to the folder where to save the outputs")
parser.add_argument("--samples", type=int, default=5, help="number of samples to output")
return parser.parse_args()
def main():
# Parse arguments
args = parse_arguments()
# create magic fixup model
magic_fixup = MagicFixup(model_path=args.checkpoint)
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
# run it here
to_tensor = torchvision.transforms.ToTensor()
ref_path = args.reference
coarse_edit_path = args.edit
mask_edit_path = coarse_edit_path
edit_file_name = pathlib.Path(coarse_edit_path).stem
save_pattern = f'{output_dir}/{edit_file_name}__sample__*.png'
save_counter = len(glob.glob(save_pattern))
all_rgbs = []
for i in range(args.samples):
with autocast("cuda"):
ref_image_t = to_tensor(Image.open(ref_path).convert('RGB').resize((512,512))).half().cuda()
coarse_edit_t = to_tensor(Image.open(coarse_edit_path).resize((512,512))).half().cuda()
# get mask from coarse
# mask_t = torch.ones_like(coarse_edit_t[-1][None, None,...])
coarse_edit_mask_t = to_tensor(Image.open(mask_edit_path).resize((512,512))).half().cuda()
# get mask from coarse
mask_t = (coarse_edit_mask_t[-1][None, None,...]).half() # do center crop
coarse_edit_t_rgb = coarse_edit_t[:-1]
out_rgb = magic_fixup.edit_image(ref_image_t, coarse_edit_t_rgb, mask_t, start_step=1.0, steps=50)
all_rgbs.append(out_rgb.squeeze().cpu().detach().float())
save_path = f'{output_dir}/{edit_file_name}__sample__{save_counter:03d}.png'
torchvision.utils.save_image(all_rgbs[i], save_path)
save_counter += 1
if __name__ == "__main__":
main()