-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_carlini.py
287 lines (240 loc) · 12.1 KB
/
test_carlini.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from __future__ import absolute_import, division, print_function
import os
import time
from collections import OrderedDict
from logging import FileHandler, getLogger
import numpy as np
import six
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.contrib.learn.python.learn.datasets import mnist
from carlini import from_carlini_images, to_carlini_images
from carlini.l2_attack import CarliniL2
from models import create_model
from utils import (AttributeDict, batch_iterator, get_sha,
load_training_params, print_results_str, register_metrics,
save_images, select_balanced_subset)
flags = tf.flags
logging = tf.logging
flags.DEFINE_string("data_dir", "data", "path to data")
flags.DEFINE_string("load_dir", None, "path to load checkpoint from")
flags.DEFINE_string("working_dir", "test", "path to working dir")
flags.DEFINE_string("adv_data_dir", "adv_data", "path to generated adv data")
flags.DEFINE_string("samples_dir", "samples", "path to samples dir")
flags.DEFINE_string("git_revision", None, "git revision")
# model parameters
flags.DEFINE_string("model_name", None, "name of the model")
flags.DEFINE_string("model", None, "model name (mlp or lenet5)")
flags.DEFINE_string("w_init", "msra", "weights initializer")
flags.DEFINE_string("activation_fn", None, "activation function")
flags.DEFINE_integer("num_classes", -1, "number of classes")
flags.DEFINE_string("layer_dims", None, "dimensions of fully-connected layers")
# test parameters
flags.DEFINE_integer("restore_epoch_index", None, "epoch for which restore model")
flags.DEFINE_integer("seed", 1, "seed for sampling")
flags.DEFINE_integer("batch_size", 100, "batch_index size (default: 100)")
flags.DEFINE_integer("num_examples", 10000, "number of examples to generate perturbation")
flags.DEFINE_string("dataset", "test", "dataset to use (train, validation, test)")
# attack parameters
flags.DEFINE_integer("carlini_batch_size", 100, "batch size (default: 100)")
flags.DEFINE_integer("carlini_max_iter", 10000, "max iterations (default: 1000)")
flags.DEFINE_integer("carlini_binary_steps", 9, "number of binary steps")
flags.DEFINE_float("carlini_confidence", 0, "margin confidence of adversarial examples")
flags.DEFINE_bool("sort_labels", True, "sort labels")
flags.DEFINE_boolean("generate_summary", True, "generate summary images")
flags.DEFINE_integer("print_frequency", 10, "summarize frequency")
FLAGS = tf.app.flags.FLAGS
def setup_experiment():
np.random.seed(FLAGS.seed)
if not tf.gfile.Exists(FLAGS.data_dir) or not tf.gfile.IsDirectory(
FLAGS.data_dir):
raise ValueError("Could not find folder %s" % FLAGS.data_dir)
assert FLAGS.batch_size % FLAGS.carlini_batch_size == 0
if not tf.gfile.Exists(FLAGS.load_dir) or not tf.gfile.IsDirectory(
FLAGS.load_dir):
raise ValueError("Could not find folder %s" % FLAGS.load_dir)
FLAGS.working_dir = os.path.join(FLAGS.working_dir, os.path.basename(os.path.normpath(FLAGS.load_dir)))
FLAGS.adv_data_dir = os.path.join(FLAGS.working_dir, FLAGS.adv_data_dir)
FLAGS.samples_dir = os.path.join(FLAGS.working_dir, FLAGS.samples_dir)
FLAGS.git_revision = get_sha()
if tf.gfile.Exists(FLAGS.working_dir):
tf.gfile.DeleteRecursively(FLAGS.working_dir)
tf.gfile.MakeDirs(FLAGS.working_dir)
tf.gfile.MakeDirs(FLAGS.adv_data_dir)
tf.gfile.MakeDirs(FLAGS.samples_dir)
train_params = load_training_params(FLAGS.load_dir)
FLAGS.model = train_params['model']
FLAGS.model_name = train_params['model_name']
FLAGS.activation_fn = train_params['activation_fn']
FLAGS.num_classes = train_params['num_classes']
FLAGS.layer_dims = train_params['layer_dims']
# configure logging
logger = getLogger('tensorflow')
tf.logging.set_verbosity(tf.logging.INFO)
file_hndl = FileHandler(os.path.join(FLAGS.working_dir, 'tensorflow.log'))
file_hndl.setLevel(logging.DEBUG)
logger.addHandler(file_hndl)
# print config
logging.info({k: v.value for k, v in FLAGS._flags().items()})
logging.info("Training params: %s", train_params)
def non_converged_indices(x):
indices = []
for i, x_i in enumerate(x):
if not np.allclose(x_i, 0.5 * np.ones_like(x_i)):
indices.append(i)
return np.asarray(indices, dtype=np.int32)
def filter_non_coverged(x, y):
# For some examples carlini method not always converges
i = 0
filtered_x = []
filtered_y = []
for x_i, y_i in zip(x, y):
if not np.allclose(x_i, 0.5 * np.ones_like(x_i)):
filtered_x.append(x_i)
filtered_y.append(y_i)
else:
i += 1
logging.warn("Failed to converged for {} images".format(i))
filtered_x = np.asanyarray(filtered_x)
filtered_y = np.asanyarray(filtered_y)
return filtered_x, filtered_y
def main(unused_args):
assert len(unused_args) == 1, unused_args
setup_experiment()
mnist_ds = mnist.read_data_sets(
FLAGS.data_dir, dtype=tf.float32, reshape=False)
test_ds = getattr(mnist_ds, FLAGS.dataset)
images = test_ds.images
labels = test_ds.labels
if FLAGS.sort_labels:
ys_indices = np.argsort(labels)
images = images[ys_indices]
labels = labels[ys_indices]
# loaded discriminator number of classes and dims
img_shape = [None, 1, 28, 28]
num_classes = FLAGS.num_classes
X = tf.placeholder(tf.float32, shape=img_shape, name='X')
y = tf.placeholder(tf.int32, shape=[None], name='y')
y_onehot = tf.one_hot(y, num_classes)
# model
model = create_model(FLAGS, name=FLAGS.model_name)
def test_model(x, **kwargs):
return model(x, train=False, **kwargs)
# wrap model for carlini method
def carlini_predict(x):
# carlini requires inputs in [-0.5, 0.5] but network trained on
# [0, 1] inputs
x = (2 * x + 1) / 2
x = tf.transpose(x, [0, 3, 1, 2])
return test_model(x)['logits']
carlini_model = AttributeDict({'num_channels': 1,
'image_size': 28,
'num_labels': num_classes,
'predict': carlini_predict})
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.25)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
# carlini l2 attack
carlini_l2 = CarliniL2(sess, carlini_model,
batch_size=FLAGS.carlini_batch_size,
max_iterations=FLAGS.carlini_max_iter,
confidence=FLAGS.carlini_confidence,
binary_search_steps=FLAGS.carlini_binary_steps,
targeted=False)
def generate_carlini_l2(images, onehot_labels):
return from_carlini_images(
carlini_l2.attack(
to_carlini_images(images), onehot_labels))
X_ca_l2 = tf.py_func(generate_carlini_l2, [X, y_onehot], tf.float32)
X_ca_l2 = tf.reshape(X_ca_l2, tf.shape(X))
filter_index_l2 = tf.py_func(non_converged_indices, [X_ca_l2], tf.int32)
filter_index_l2.set_shape([FLAGS.batch_size])
X_f_l2 = tf.gather(X, filter_index_l2)
X_ca_f_l2 = tf.gather(X_ca_l2, filter_index_l2)
# outputs
outs_x = test_model(X)
outs_x_ca_l2 = test_model(X_ca_l2)
# l2 carlini results
l2_ca = tf.sqrt(tf.reduce_sum((X_ca_l2 - X)**2, axis=(1, 2, 3)))
l2_ca_norm = l2_ca / tf.sqrt(tf.reduce_sum(X**2, axis=(1, 2, 3)))
conf_ca = tf.reduce_mean(tf.reduce_max(outs_x_ca_l2['prob'], axis=1))
l2_ca_f = tf.sqrt(tf.reduce_sum((X_ca_f_l2 - X_f_l2)**2, axis=(1, 2, 3)))
l2_ca_f_norm = l2_ca_f / tf.sqrt(tf.reduce_sum(X_f_l2**2, axis=(1, 2, 3)))
smoothness_ca_f = tf.reduce_mean(tf.image.total_variation(X_ca_f_l2))
nll = tf.reduce_mean(tf.losses.softmax_cross_entropy(y_onehot, outs_x['logits']))
err = 1 - slim.metrics.accuracy(outs_x['pred'], y)
err_ca_l2 = 1 - slim.metrics.accuracy(outs_x_ca_l2['pred'], y)
total_processed_l2 = tf.shape(X_f_l2)[0]
metrics = OrderedDict([('nll', nll),
('err', err),
('err_ca_l2', err_ca_l2),
('l2_ca', tf.reduce_mean(l2_ca)),
('l2_ca_norm', tf.reduce_mean(l2_ca_norm)),
('conf_ca', conf_ca),
('l2_ca_f', tf.reduce_mean(l2_ca_f)),
('l2_ca_f_norm', tf.reduce_mean(l2_ca_f_norm)),
('smoothness_ca', smoothness_ca_f),
('total_processed_l2', total_processed_l2)])
metrics_mean, metrics_upd = register_metrics(metrics)
tf.summary.histogram('y_data', y)
tf.summary.histogram('y_hat', outs_x['pred'])
tf.summary.histogram('y_adv', outs_x_ca_l2['pred'])
# start
tf.local_variables_initializer().run()
model_loader = tf.train.Saver(tf.model_variables())
model_filename = ('model' if FLAGS.restore_epoch_index is None else
'model-%d' % FLAGS.restore_epoch_index)
model_path = os.path.join(FLAGS.load_dir, 'chks', model_filename)
model_loader.restore(sess, model_path)
summary_writer = tf.summary.FileWriter(FLAGS.working_dir, sess.graph)
summaries = tf.summary.merge_all()
if FLAGS.generate_summary:
logging.info("Generating samples...")
summary_images, summary_labels = select_balanced_subset(
images, labels, num_classes, num_classes)
summary_images = summary_images.transpose((0, 3, 1, 2))
err_l2, summary_ca_l2_imgs = (
sess.run([err_ca_l2, X_ca_l2],
{X: summary_images, y: summary_labels}))
if not np.allclose(err_l2, 1):
logging.warn("Generated samples are not all mistakes: %f", err_l2)
save_path = os.path.join(FLAGS.samples_dir, 'orig.png')
save_images(summary_images, save_path)
save_path = os.path.join(FLAGS.samples_dir, 'carlini_l2.png')
save_images(summary_ca_l2_imgs, save_path)
else:
logging.debug("Skipping summary...")
logging.info("Starting...")
# Carlini is slow. Sample random subset
if FLAGS.num_examples > 0 and FLAGS.num_examples < images.shape[0]:
indices = np.arange(images.shape[0])
np.random.shuffle(indices)
images = images[indices[:FLAGS.num_examples]]
labels = labels[indices[:FLAGS.num_examples]]
X_hat_np = []
test_iterator = batch_iterator(images, labels, FLAGS.batch_size, shuffle=False)
start_time = time.time()
for batch_index, (images, labels) in enumerate(test_iterator, 1):
ca_l2_imgs, summary = sess.run(
[X_ca_l2, summaries, metrics_upd],
{X: images, y: labels})[:2]
X_hat_np.extend(ca_l2_imgs)
summary_writer.add_summary(summary, batch_index)
save_path = os.path.join(FLAGS.samples_dir, 'b%d-ca_l2.png' % batch_index)
save_images(ca_l2_imgs, save_path)
save_path = os.path.join(FLAGS.samples_dir, 'b%d-orig.png' % batch_index)
save_images(images, save_path)
if batch_index % FLAGS.print_frequency == 0:
str_bfr = six.StringIO()
str_bfr.write("Batch {} [{:.2f}s]:".format(batch_index, time.time() - start_time))
print_results_str(str_bfr, metrics.keys(), sess.run(metrics_mean))
logging.info(str_bfr.getvalue()[:-1])
X_hat_np = np.asarray(X_hat_np)
save_path = os.path.join(FLAGS.adv_data_dir, 'mnist_%s.npz' % FLAGS.dataset)
np.savez(save_path, X_hat_np)
logging.info("Saved adv_data to %s", save_path)
str_bfr = six.StringIO()
str_bfr.write("Test results [{:.2f}s]:".format(time.time() - start_time))
print_results_str(str_bfr, metrics.keys(), sess.run(metrics_mean))
logging.info(str_bfr.getvalue()[:-1])
if __name__ == "__main__":
tf.app.run(main)