Provided you have a dataset:
#!/bin/bash
export WANDB_MODE="offline"
export NCCL_P2P_DISABLE=1
export TORCH_NCCL_ENABLE_MONITORING=0
export FINETRAINERS_LOG_LEVEL=DEBUG
GPU_IDS="0,1"
DATA_ROOT="/path/to/dataset"
CAPTION_COLUMN="prompts.txt"
VIDEO_COLUMN="videos.txt"
OUTPUT_DIR="/path/to/models/ltx-video/"
ID_TOKEN="BW_STYLE"
# Model arguments
model_cmd="--model_name ltx_video \
--pretrained_model_name_or_path Lightricks/LTX-Video"
# Dataset arguments
dataset_cmd="--data_root $DATA_ROOT \
--video_column $VIDEO_COLUMN \
--caption_column $CAPTION_COLUMN \
--id_token $ID_TOKEN \
--video_resolution_buckets 49x512x768 \
--caption_dropout_p 0.05"
# Dataloader arguments
dataloader_cmd="--dataloader_num_workers 0"
# Diffusion arguments
diffusion_cmd="--flow_weighting_scheme logit_normal"
# Training arguments
training_cmd="--training_type lora \
--seed 42 \
--mixed_precision bf16 \
--batch_size 1 \
--train_steps 3000 \
--rank 128 \
--lora_alpha 128 \
--target_modules to_q to_k to_v to_out.0 \
--gradient_accumulation_steps 4 \
--gradient_checkpointing \
--checkpointing_steps 500 \
--checkpointing_limit 2 \
--enable_slicing \
--enable_tiling"
# Optimizer arguments
optimizer_cmd="--optimizer adamw \
--lr 3e-5 \
--lr_scheduler constant_with_warmup \
--lr_warmup_steps 100 \
--lr_num_cycles 1 \
--beta1 0.9 \
--beta2 0.95 \
--weight_decay 1e-4 \
--epsilon 1e-8 \
--max_grad_norm 1.0"
# Miscellaneous arguments
miscellaneous_cmd="--tracker_name finetrainers-ltxv \
--output_dir $OUTPUT_DIR \
--nccl_timeout 1800 \
--report_to wandb"
cmd="accelerate launch --config_file accelerate_configs/uncompiled_2.yaml --gpu_ids $GPU_IDS train.py \
$model_cmd \
$dataset_cmd \
$dataloader_cmd \
$diffusion_cmd \
$training_cmd \
$optimizer_cmd \
$miscellaneous_cmd"
echo "Running command: $cmd"
eval $cmd
echo -ne "-------------------- Finished executing script --------------------\n\n"
LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, 49x512x768
resolution, without precomputation:
Training configuration: {
"trainable parameters": 117440512,
"total samples": 69,
"train epochs": 1,
"train steps": 10,
"batches per device": 1,
"total batches observed per epoch": 69,
"train batch size": 1,
"gradient accumulation steps": 1
}
stage | memory_allocated | max_memory_reserved |
---|---|---|
before training start | 13.486 | 13.879 |
before validation start | 14.146 | 17.623 |
after validation end | 14.146 | 17.623 |
after epoch 1 | 14.146 | 17.623 |
after training end | 4.461 | 17.623 |
Note: requires about 18
GB of VRAM without precomputation.
LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, 49x512x768
resolution, with precomputation:
Training configuration: {
"trainable parameters": 117440512,
"total samples": 1,
"train epochs": 10,
"train steps": 10,
"batches per device": 1,
"total batches observed per epoch": 1,
"train batch size": 1,
"gradient accumulation steps": 1
}
stage | memory_allocated | max_memory_reserved |
---|---|---|
after precomputing conditions | 8.88 | 8.920 |
after precomputing latents | 9.684 | 11.613 |
before training start | 3.809 | 10.010 |
after epoch 1 | 4.26 | 10.916 |
before validation start | 4.26 | 10.916 |
after validation end | 13.924 | 17.262 |
after training end | 4.26 | 14.314 |
Note: requires about 17.5
GB of VRAM with precomputation. If validation is not performed, the memory usage is reduced to 11
GB.
Assuming your LoRA is saved and pushed to the HF Hub, and named my-awesome-name/my-awesome-lora
, we can now use the finetuned model for inference:
import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video
pipe = LTXPipeline.from_pretrained(
"Lightricks/LTX-Video", torch_dtype=torch.bfloat16
).to("cuda")
+ pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="ltxv-lora")
+ pipe.set_adapters(["ltxv-lora"], [0.75])
video = pipe("<my-awesome-prompt>").frames[0]
export_to_video(video, "output.mp4", fps=8)
You can refer to the following guides to know more about the model pipeline and performing LoRA inference in diffusers
: