Skip to content

Latest commit

 

History

History
166 lines (135 loc) · 5.09 KB

ltx_video.md

File metadata and controls

166 lines (135 loc) · 5.09 KB

LTX-Video

Training

Provided you have a dataset:

#!/bin/bash
export WANDB_MODE="offline"
export NCCL_P2P_DISABLE=1
export TORCH_NCCL_ENABLE_MONITORING=0
export FINETRAINERS_LOG_LEVEL=DEBUG

GPU_IDS="0,1"

DATA_ROOT="/path/to/dataset"
CAPTION_COLUMN="prompts.txt"
VIDEO_COLUMN="videos.txt"
OUTPUT_DIR="/path/to/models/ltx-video/"

ID_TOKEN="BW_STYLE"

# Model arguments
model_cmd="--model_name ltx_video \
  --pretrained_model_name_or_path Lightricks/LTX-Video"

# Dataset arguments
dataset_cmd="--data_root $DATA_ROOT \
  --video_column $VIDEO_COLUMN \
  --caption_column $CAPTION_COLUMN \
  --id_token $ID_TOKEN \
  --video_resolution_buckets 49x512x768 \
  --caption_dropout_p 0.05"

# Dataloader arguments
dataloader_cmd="--dataloader_num_workers 0"

# Diffusion arguments
diffusion_cmd="--flow_weighting_scheme logit_normal"

# Training arguments
training_cmd="--training_type lora \
  --seed 42 \
  --mixed_precision bf16 \
  --batch_size 1 \
  --train_steps 3000 \
  --rank 128 \
  --lora_alpha 128 \
  --target_modules to_q to_k to_v to_out.0 \
  --gradient_accumulation_steps 4 \
  --gradient_checkpointing \
  --checkpointing_steps 500 \
  --checkpointing_limit 2 \
  --enable_slicing \
  --enable_tiling"

# Optimizer arguments
optimizer_cmd="--optimizer adamw \
  --lr 3e-5 \
  --lr_scheduler constant_with_warmup \
  --lr_warmup_steps 100 \
  --lr_num_cycles 1 \
  --beta1 0.9 \
  --beta2 0.95 \
  --weight_decay 1e-4 \
  --epsilon 1e-8 \
  --max_grad_norm 1.0"

# Miscellaneous arguments
miscellaneous_cmd="--tracker_name finetrainers-ltxv \
  --output_dir $OUTPUT_DIR \
  --nccl_timeout 1800 \
  --report_to wandb"

cmd="accelerate launch --config_file accelerate_configs/uncompiled_2.yaml --gpu_ids $GPU_IDS train.py \
  $model_cmd \
  $dataset_cmd \
  $dataloader_cmd \
  $diffusion_cmd \
  $training_cmd \
  $optimizer_cmd \
  $miscellaneous_cmd"

echo "Running command: $cmd"
eval $cmd
echo -ne "-------------------- Finished executing script --------------------\n\n"

Memory Usage

LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, 49x512x768 resolution, without precomputation:

Training configuration: {
    "trainable parameters": 117440512,
    "total samples": 69,
    "train epochs": 1,
    "train steps": 10,
    "batches per device": 1,
    "total batches observed per epoch": 69,
    "train batch size": 1,
    "gradient accumulation steps": 1
}
stage memory_allocated max_memory_reserved
before training start 13.486 13.879
before validation start 14.146 17.623
after validation end 14.146 17.623
after epoch 1 14.146 17.623
after training end 4.461 17.623

Note: requires about 18 GB of VRAM without precomputation.

LoRA with rank 128, batch size 1, gradient checkpointing, optimizer adamw, 49x512x768 resolution, with precomputation:

Training configuration: {
    "trainable parameters": 117440512,
    "total samples": 1,
    "train epochs": 10,
    "train steps": 10,
    "batches per device": 1,
    "total batches observed per epoch": 1,
    "train batch size": 1,
    "gradient accumulation steps": 1
}
stage memory_allocated max_memory_reserved
after precomputing conditions 8.88 8.920
after precomputing latents 9.684 11.613
before training start 3.809 10.010
after epoch 1 4.26 10.916
before validation start 4.26 10.916
after validation end 13.924 17.262
after training end 4.26 14.314

Note: requires about 17.5 GB of VRAM with precomputation. If validation is not performed, the memory usage is reduced to 11 GB.

Inference

Assuming your LoRA is saved and pushed to the HF Hub, and named my-awesome-name/my-awesome-lora, we can now use the finetuned model for inference:

import torch
from diffusers import LTXPipeline
from diffusers.utils import export_to_video

pipe = LTXPipeline.from_pretrained(
    "Lightricks/LTX-Video", torch_dtype=torch.bfloat16
).to("cuda")
+ pipe.load_lora_weights("my-awesome-name/my-awesome-lora", adapter_name="ltxv-lora")
+ pipe.set_adapters(["ltxv-lora"], [0.75])

video = pipe("<my-awesome-prompt>").frames[0]
export_to_video(video, "output.mp4", fps=8)

You can refer to the following guides to know more about the model pipeline and performing LoRA inference in diffusers: