-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathminVar.py
122 lines (98 loc) · 2.77 KB
/
minVar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import math
import random
import numpy as np
from numpy.linalg import cholesky
import matplotlib.pyplot as plt
import scipy
from scipy.optimize import minimize
from random import shuffle
import pdb
def PseudoDeterminent(V):
eig_values = np.linalg.eig(V)[0]
det = 1
for i in eig_values:
if i > 1e-12:
det = det*i
return det
def Gradient(c, pi, A, R):
[m,k,d] = np.shape(c)
v = np.zeros([m,k])
for a in range(k):
V = np.zeros([d,d])
for i in R[a]:
V += pi[i,a]*c[i,a].reshape([d,1]).dot(c[i,a].reshape([1,d]))
V = np.linalg.pinv(V)
for i in R[a]:
v[i,a] = c[i,a].reshape([1,d]).dot(V).dot(c[i,a].reshape([d,1]))
return v
def Tem(x, tup):
G = tup[0]
i = tup[1]
A = tup[2]
pi = tup[3]
s = 0
index = 0
for a in A[i]:
s += -np.log(1 + x[index] * G[i,a])
index += 1
return s
def X1(x):
s = 0
for i in x:
s+=i
return s
def Delta(i, G, pi, A, R):
x0 = []
lb = []
ub = []
for a in A[i]:
ub.append(1-pi[i,a])
x0.append(0.0)
lb.append(-pi[i,a])
cons = ({'type': 'eq', 'fun': lambda x: X1(x)})
bnds = scipy.optimize.Bounds(lb,ub)
res = minimize(Tem, x0, [G, i, A, pi], bounds = bnds, constraints = cons)
return res
def OPTIMIZE(i, c, pi, U, A, R):
[m,k,d] = np.shape(c)
G = np.zeros([m,k])
for client in range(m):
for a in A[client]:
G[client,a] = (U[a].dot(c[client,a])).dot(c[client,a])
delta = Delta(i, G, pi, A, R).x
index = 0
for a in A[i]:
pi[i,a] = pi[i,a] + delta[index]
tem_matrix = U[a].dot(c[i,a].reshape([d,1]))
tem_matrix = tem_matrix.dot(c[i,a].reshape([1,d]))
tem_matrix = tem_matrix.dot(U[a])
tem_matrix = delta[index] * tem_matrix/(1 + delta[index] * (U[a].dot(c[i,a])).dot(c[i,a]))
U[a] = U[a] - tem_matrix
index += 1
return pi, U
def OptimalExperiment(c, A, R, epsilon):
[m,k,d] = np.shape(c)
pi = np.zeros([m,k])
for a in range(k):
for i in R[a]:
pi[i,a] = 1.0/len(A[i])
U = []
D = 0
for a in range(k):
U_a = np.zeros([d,d])
for i in R[a]:
U_a += pi[i,a] * c[i,a].reshape([d,1]).dot(c[i,a].reshape([1,d]))
D += np.linalg.matrix_rank(U_a)
U.append(np.linalg.pinv(U_a))
for iteration in range(10):
for i in range(m):
pi, U = OPTIMIZE(i, c, pi, U, A, R)
G = np.zeros([m,k])
for i in range(m):
for a in A[i]:
G[i,a] = (U[a].dot(c[i,a])).dot(c[i,a])
sum_i = np.sum(np.max(G,axis=1))
if sum_i < D + epsilon:
break
print('G(pi) = ', sum_i, ', D = ', D)
return pi, iteration