-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathintuitive_control.py
136 lines (113 loc) · 5.54 KB
/
intuitive_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import math
import argparse
import numpy as np
from scipy.io import savemat,loadmat
import torch
import torchvision.transforms.functional as F
import torchvision.transforms as transforms
from config import Config
from util.logging import init_logging, make_logging_dir
from util.distributed import init_dist
from util.trainer import get_model_optimizer_and_scheduler, set_random_seed, get_trainer
from util.distributed import master_only_print as print
from data.image_dataset import ImageDataset
from inference import write2video
def parse_args():
parser = argparse.ArgumentParser(description='Training')
parser.add_argument('--config', default='./config/face.yaml')
parser.add_argument('--name', default=None)
parser.add_argument('--checkpoints_dir', default='result',
help='Dir for saving logs and models.')
parser.add_argument('--seed', type=int, default=0, help='Random seed.')
parser.add_argument('--which_iter', type=int, default=None)
parser.add_argument('--no_resume', action='store_true')
parser.add_argument('--input_name', type=str)
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--single_gpu', action='store_true')
parser.add_argument('--output_dir', type=str)
args = parser.parse_args()
return args
def get_control(input_name):
control_dict = {}
control_dict['rotation_center'] = torch.tensor([0,0,0,0,0,0.45])
control_dict['rotation_left_x'] = torch.tensor([0,0,math.pi/10,0,0,0.45])
control_dict['rotation_right_x'] = torch.tensor([0,0,-math.pi/10,0,0,0.45])
control_dict['rotation_left_y'] = torch.tensor([math.pi/10,0,0,0,0,0.45])
control_dict['rotation_right_y'] = torch.tensor([-math.pi/10,0,0,0,0,0.45])
control_dict['rotation_left_z'] = torch.tensor([0,math.pi/8,0,0,0,0.45])
control_dict['rotation_right_z'] = torch.tensor([0,-math.pi/8,0,0,0,0.45])
expession = loadmat('{}/expression.mat'.format(input_name))
for item in ['expression_center', 'expression_mouth', 'expression_eyebrow', 'expression_eyes']:
control_dict[item] = torch.tensor(expession[item])[0]
sort_rot_control = [
'rotation_left_x', 'rotation_center',
'rotation_right_x', 'rotation_center',
'rotation_left_y', 'rotation_center',
'rotation_right_y', 'rotation_center',
'rotation_left_z', 'rotation_center',
'rotation_right_z', 'rotation_center'
]
sort_exp_control = [
'expression_center', 'expression_mouth',
'expression_center', 'expression_eyebrow',
'expression_center', 'expression_eyes',
]
return control_dict, sort_rot_control, sort_exp_control
if __name__ == '__main__':
args = parse_args()
set_random_seed(args.seed)
opt = Config(args.config, args, is_train=False)
if not args.single_gpu:
opt.local_rank = args.local_rank
init_dist(opt.local_rank)
opt.device = torch.cuda.current_device()
# create a visualizer
date_uid, logdir = init_logging(opt)
opt.logdir = logdir
make_logging_dir(logdir, date_uid)
# create a model
net_G, net_G_ema, opt_G, sch_G \
= get_model_optimizer_and_scheduler(opt)
trainer = get_trainer(opt, net_G, net_G_ema, \
opt_G, sch_G, None)
current_epoch, current_iteration = trainer.load_checkpoint(
opt, args.which_iter)
net_G = trainer.net_G_ema.eval()
output_dir = os.path.join(
args.output_dir,
'epoch_{:05}_iteration_{:09}'.format(current_epoch, current_iteration)
)
os.makedirs(output_dir, exist_ok=True)
image_dataset = ImageDataset(opt.data, args.input_name)
control_dict, sort_rot_control, sort_exp_control = get_control(args.input_name)
for _ in range(image_dataset.__len__()):
with torch.no_grad():
data = image_dataset.next_image()
num = 10
output_images = []
# rotation control
current = control_dict['rotation_center']
for control in sort_rot_control:
for i in range(num):
rotation = (control_dict[control]-current)*i/(num-1)+current
data['target_semantics'][:, 64:70, :] = rotation[None, :, None]
output_dict = net_G(data['source_image'].cuda(), data['target_semantics'].cuda())
output_images.append(
output_dict['fake_image'].cpu().clamp_(-1, 1)
)
current = rotation
# expression control
current = data['target_semantics'][0, :64, 0]
for control in sort_exp_control:
for i in range(num):
expression = (control_dict[control]-current)*i/(num-1)+current
data['target_semantics'][:, :64, :] = expression[None, :, None]
output_dict = net_G(data['source_image'].cuda(), data['target_semantics'].cuda())
output_images.append(
output_dict['fake_image'].cpu().clamp_(-1, 1)
)
current = expression
output_images = torch.cat(output_images, 0)
print('write results to file {}/{}'.format(output_dir, data['name']))
write2video('{}/{}'.format(output_dir, data['name']), output_images)