forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchecking-existence-of-edge-length-limited-paths-ii.py
221 lines (188 loc) · 7.03 KB
/
checking-existence-of-edge-length-limited-paths-ii.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Time: ctor: O(mlogm + m * α(n) + nlogn) ~= O(mlogm + nlogn)
# query: O(α(n) + logn) ~= O(logn)
# Space: O(nlogn + m)
from functools import partial
# Template:
# https://github.com/kamyu104/GoogleKickStart-2020/blob/main/Round%20D/locked_doors.py
class TreeInfos(object): # Time: O(NlogN), Space: O(NlogN), N is the number of nodes
def __init__(self, children):
def preprocess(curr, parent, weight):
if parent != -1:
W[curr].append(weight)
P[curr].append(parent) # ancestors of the node i
i = 0
while i < len(P[curr]) and i < len(P[P[curr][i]]):
W[curr].append(max(W[curr][i], W[P[curr][i]][i]))
P[curr].append(P[P[curr][i]][i])
i += 1
C[0] += 1
L[curr] = C[0] # the subtree of the node i is represented by traversal index L[i]..R[i]
def divide(curr, parent, weight):
stk.append(partial(postprocess, curr))
for child, w in reversed(children[curr]):
if child == parent:
continue
stk.append(partial(divide, child, curr, w))
stk.append(partial(preprocess, curr, parent, weight))
def postprocess(curr):
R[curr] = C[0] # the subtree of the node i is represented by traversal index L[i]..R[i]
N = len(children)
L, R, P, W, C = [0]*N, [0]*N, [[] for _ in xrange(N)], [[] for _ in xrange(N)], [-1]
for i in xrange(N):
if L[i]:
continue
stk = []
stk.append(partial(divide, i, -1, 0))
while stk:
stk.pop()()
self.L, self.R, self.P, self.W = L, R, P, W
def is_ancestor(self, a, b): # includes itself
return self.L[a] <= self.L[b] <= self.R[b] <= self.R[a]
def max_weights(self, a, b):
def binary_lift(a, b):
w = 0
for i in reversed(xrange(len(self.P[a]))): # O(logN)
if i < len(self.P[a]) and not self.is_ancestor(self.P[a][i], b):
w = max(w, self.W[a][i])
a = self.P[a][i]
return max(w, self.W[a][0])
w = 0
if not self.is_ancestor(a, b):
w = max(w, binary_lift(a, b))
if not self.is_ancestor(b, a):
w = max(w, binary_lift(b, a))
return w
class UnionFind(object): # Time: (n * α(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root:
return False
if self.rank[x_root] < self.rank[y_root]: # union by rank
self.set[x_root] = y_root
elif self.rank[x_root] > self.rank[y_root]:
self.set[y_root] = x_root
else:
self.set[y_root] = x_root
self.rank[x_root] += 1
return True
class DistanceLimitedPathsExist(object):
def __init__(self, n, edgeList):
"""
:type n: int
:type edgeList: List[List[int]]
"""
edgeList.sort(key = lambda x:x[2])
self.__uf = UnionFind(n)
self.__adj = [[] for _ in xrange(n)]
for index, (i, j, weight) in enumerate(edgeList):
if not self.__uf.union_set(i, j):
continue
self.__adj[i].append((j, weight))
self.__adj[j].append((i, weight))
self.__tree_infos = TreeInfos(self.__adj)
def query(self, p, q, limit):
"""
:type p: int
:type q: int
:type limit: int
:rtype: bool
"""
if self.__uf.find_set(p) != self.__uf.find_set(q):
return False
return self.__tree_infos.max_weights(p, q) < limit
# Time: ctor: O(mlogm + m * α(n) * logm) ~= O(mlogm)
# query: O(logm + α(n) * logm) ~= O(logm)
# Space: O(n + m * α(n) + m) ~= O(n + m)
import collections
import sortedcontainers
import bisect
class SnapshotArray(object):
def __init__(self, length):
"""
:type length: int
"""
self.__snaps = collections.defaultdict(lambda:sortedcontainers.SortedList([(0, 0)]))
def set(self, index, val, snap_id):
"""
:type index: int
:type val: int
:rtype: None
"""
i = self.__snaps[index].bisect_left((snap_id, float("-inf")))
if i != len(self.__snaps[index]) and self.__snaps[index][i][0] == snap_id:
self.__snaps[index].remove(self.__snaps[index][i])
self.__snaps[index].add((snap_id, val))
def get(self, index, snap_id):
"""
:type index: int
:type snap_id: int
:rtype: int
"""
i = self.__snaps[index].bisect_left((snap_id+1, float("-inf"))) - 1
return self.__snaps[index][i][1]
class VersionedUnionFind(object): # Time: (n * α(n)), Space: O(n)
def __init__(self, n):
self.snap_id = 0
self.set = SnapshotArray(n)
for i in xrange(n):
self.set.set(i, i, self.snap_id)
self.rank = SnapshotArray(n)
def find_set(self, x, snap_id):
stk = []
while self.set.get(x, snap_id) != x: # path compression
stk.append(x)
x = self.set.get(x, snap_id)
while stk:
self.set.set(stk.pop(), x, snap_id)
return x
def union_set(self, x, y):
x_root = self.find_set(x, self.snap_id)
y_root = self.find_set(y, self.snap_id)
if x_root == y_root:
return False
if self.rank.get(x_root, self.snap_id) < self.rank.get(y_root, self.snap_id): # union by rank
self.set.set(x_root, y_root, self.snap_id)
elif self.rank.get(x_root, self.snap_id) > self.rank.get(y_root, self.snap_id):
self.set.set(y_root, x_root, self.snap_id)
else:
self.set.set(y_root, x_root, self.snap_id)
self.rank.set(x_root, self.rank.get(x_root, self.snap_id)+1, self.snap_id)
return True
def snap(self):
self.snap_id += 1
class DistanceLimitedPathsExist2(object):
def __init__(self, n, edgeList):
"""
:type n: int
:type edgeList: List[List[int]]
"""
edgeList.sort(key = lambda x:x[2])
self.__uf = VersionedUnionFind(n)
self.__weights = []
for index, (i, j, weight) in enumerate(edgeList):
if not self.__uf.union_set(i, j):
continue
self.__uf.snap()
self.__weights.append(weight)
def query(self, p, q, limit):
"""
:type p: int
:type q: int
:type limit: int
:rtype: bool
"""
snap_id = bisect.bisect_left(self.__weights, limit)-1
if snap_id == -1:
return False
return self.__uf.find_set(p, snap_id) == self.__uf.find_set(q, snap_id)