-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathgradio_app.py
219 lines (199 loc) · 9.79 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import sys
import gradio as gr
import argparse
import numpy as np
import torch
from torch import nn
from languagebind import LanguageBind, transform_dict, LanguageBindImageTokenizer, to_device
code_highlight_css = (
"""
#chatbot .hll { background-color: #ffffcc }
#chatbot .c { color: #408080; font-style: italic }
#chatbot .err { border: 1px solid #FF0000 }
#chatbot .k { color: #008000; font-weight: bold }
#chatbot .o { color: #666666 }
#chatbot .ch { color: #408080; font-style: italic }
#chatbot .cm { color: #408080; font-style: italic }
#chatbot .cp { color: #BC7A00 }
#chatbot .cpf { color: #408080; font-style: italic }
#chatbot .c1 { color: #408080; font-style: italic }
#chatbot .cs { color: #408080; font-style: italic }
#chatbot .gd { color: #A00000 }
#chatbot .ge { font-style: italic }
#chatbot .gr { color: #FF0000 }
#chatbot .gh { color: #000080; font-weight: bold }
#chatbot .gi { color: #00A000 }
#chatbot .go { color: #888888 }
#chatbot .gp { color: #000080; font-weight: bold }
#chatbot .gs { font-weight: bold }
#chatbot .gu { color: #800080; font-weight: bold }
#chatbot .gt { color: #0044DD }
#chatbot .kc { color: #008000; font-weight: bold }
#chatbot .kd { color: #008000; font-weight: bold }
#chatbot .kn { color: #008000; font-weight: bold }
#chatbot .kp { color: #008000 }
#chatbot .kr { color: #008000; font-weight: bold }
#chatbot .kt { color: #B00040 }
#chatbot .m { color: #666666 }
#chatbot .s { color: #BA2121 }
#chatbot .na { color: #7D9029 }
#chatbot .nb { color: #008000 }
#chatbot .nc { color: #0000FF; font-weight: bold }
#chatbot .no { color: #880000 }
#chatbot .nd { color: #AA22FF }
#chatbot .ni { color: #999999; font-weight: bold }
#chatbot .ne { color: #D2413A; font-weight: bold }
#chatbot .nf { color: #0000FF }
#chatbot .nl { color: #A0A000 }
#chatbot .nn { color: #0000FF; font-weight: bold }
#chatbot .nt { color: #008000; font-weight: bold }
#chatbot .nv { color: #19177C }
#chatbot .ow { color: #AA22FF; font-weight: bold }
#chatbot .w { color: #bbbbbb }
#chatbot .mb { color: #666666 }
#chatbot .mf { color: #666666 }
#chatbot .mh { color: #666666 }
#chatbot .mi { color: #666666 }
#chatbot .mo { color: #666666 }
#chatbot .sa { color: #BA2121 }
#chatbot .sb { color: #BA2121 }
#chatbot .sc { color: #BA2121 }
#chatbot .dl { color: #BA2121 }
#chatbot .sd { color: #BA2121; font-style: italic }
#chatbot .s2 { color: #BA2121 }
#chatbot .se { color: #BB6622; font-weight: bold }
#chatbot .sh { color: #BA2121 }
#chatbot .si { color: #BB6688; font-weight: bold }
#chatbot .sx { color: #008000 }
#chatbot .sr { color: #BB6688 }
#chatbot .s1 { color: #BA2121 }
#chatbot .ss { color: #19177C }
#chatbot .bp { color: #008000 }
#chatbot .fm { color: #0000FF }
#chatbot .vc { color: #19177C }
#chatbot .vg { color: #19177C }
#chatbot .vi { color: #19177C }
#chatbot .vm { color: #19177C }
#chatbot .il { color: #666666 }
""")
#.highlight { background: #f8f8f8; }
title_markdown = ("""
<div style="display: flex; justify-content: center;">
<a href="https://github.com/PKU-YuanGroup/LanguageBind">
<img src="https://z1.ax1x.com/2023/10/16/piCuiDS.png" alt="LanguageBind🚀" border="0" style="height: 200px; margin-right: 20px;">
</a>
<a href="https://github.com/PKU-YuanGroup/LanguageBind">
<img src="https://z1.ax1x.com/2023/11/04/piMLoQ0.png" style="height: 200px;">
</a>
</div>
<h2 align="center"> LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment </h2>
<h5 align="center"> If you like our project, please give us a star ✨ on Github for latest update. </h2>
<div align="center">
<div style="display:flex; gap: 0.25rem;" align="center">
<a href='https://github.com/PKU-YuanGroup/LanguageBind'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
<a href="https://arxiv.org/pdf/2310.01852.pdf"><img src="https://img.shields.io/badge/Arxiv-2310.01852-red"></a>
<a href='https://github.com/PKU-YuanGroup/LanguageBind/stargazers'><img src='https://img.shields.io/github/stars/PKU-YuanGroup/LanguageBind.svg?style=social'></a>
</div>
</div>
""")
css = code_highlight_css + """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
def image_to_language(image, language):
inputs = {}
inputs['image'] = to_device(modality_transform['image'](image), device)
inputs['language'] = to_device(modality_transform['language'](language, max_length=77, padding='max_length',
truncation=True, return_tensors='pt'), device)
with torch.no_grad():
embeddings = model(inputs)
return (embeddings['image'] @ embeddings['language'].T).item()
def video_to_language(video, language):
inputs = {}
inputs['video'] = to_device(modality_transform['video'](video), device)
inputs['language'] = to_device(modality_transform['language'](language, max_length=77, padding='max_length',
truncation=True, return_tensors='pt'), device)
with torch.no_grad():
embeddings = model(inputs)
return (embeddings['video'] @ embeddings['language'].T).item()
def audio_to_language(audio, language):
inputs = {}
inputs['audio'] = to_device(modality_transform['audio'](audio), device)
inputs['language'] = to_device(modality_transform['language'](language, max_length=77, padding='max_length',
truncation=True, return_tensors='pt'), device)
with torch.no_grad():
embeddings = model(inputs)
return (embeddings['audio'] @ embeddings['language'].T).item()
def depth_to_language(depth, language):
inputs = {}
inputs['depth'] = to_device(modality_transform['depth'](depth.name), device)
inputs['language'] = to_device(modality_transform['language'](language, max_length=77, padding='max_length',
truncation=True, return_tensors='pt'), device)
with torch.no_grad():
embeddings = model(inputs)
return (embeddings['depth'] @ embeddings['language'].T).item()
def thermal_to_language(thermal, language):
inputs = {}
inputs['thermal'] = to_device(modality_transform['thermal'](thermal), device)
inputs['language'] = to_device(modality_transform['language'](language, max_length=77, padding='max_length',
truncation=True, return_tensors='pt'), device)
with torch.no_grad():
embeddings = model(inputs)
return (embeddings['thermal'] @ embeddings['language'].T).item()
if __name__ == '__main__':
device = 'cuda:0'
device = torch.device(device)
clip_type = {
'video': 'LanguageBind_Video_FT', # also LanguageBind_Video
'audio': 'LanguageBind_Audio_FT', # also LanguageBind_Audio
'thermal': 'LanguageBind_Thermal',
'image': 'LanguageBind_Image',
'depth': 'LanguageBind_Depth',
}
model = LanguageBind(clip_type=clip_type, use_temp=False)
model = model.to(device)
model.eval()
pretrained_ckpt = f'lb203/LanguageBind_Image'
tokenizer = LanguageBindImageTokenizer.from_pretrained(pretrained_ckpt, cache_dir='./cache_dir/tokenizer_cache_dir')
modality_transform = {c: transform_dict[c](model.modality_config[c]) for c in clip_type}
modality_transform['language'] = tokenizer
with gr.Blocks(title="LanguageBind🚀", css=css) as demo:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column():
image = gr.Image(type="filepath", height=224, width=224, label='Image Input')
language_i = gr.Textbox(lines=2, label='Text Input')
out_i = gr.Textbox(label='Similarity of Image to Text')
b_i = gr.Button("Calculate similarity of Image to Text")
with gr.Column():
video = gr.Video(type="filepath", height=224, width=224, label='Video Input')
language_v = gr.Textbox(lines=2, label='Text Input')
out_v = gr.Textbox(label='Similarity of Video to Text')
b_v = gr.Button("Calculate similarity of Video to Text")
with gr.Column():
audio = gr.Audio(type="filepath", label='Audio Input')
language_a = gr.Textbox(lines=2, label='Text Input')
out_a = gr.Textbox(label='Similarity of Audio to Text')
b_a = gr.Button("Calculate similarity of Audio to Text")
with gr.Row():
with gr.Column():
depth = gr.File(height=224, width=224, label='Depth Input, need a .png file, 16 bit, with values ranging from 0-10000 (representing 0-10 metres, but 1000 times)')
language_d = gr.Textbox(lines=2, label='Text Input')
out_d = gr.Textbox(label='Similarity of Depth to Text')
b_d = gr.Button("Calculate similarity of Depth to Text")
with gr.Column():
thermal = gr.Image(type="filepath", height=224, width=224, label='Thermal Input, you should first convert to RGB')
language_t = gr.Textbox(lines=2, label='Text Input')
out_t = gr.Textbox(label='Similarity of Thermal to Text')
b_t = gr.Button("Calculate similarity of Thermal to Text")
b_i.click(image_to_language, inputs=[image, language_i], outputs=out_i)
b_a.click(audio_to_language, inputs=[audio, language_a], outputs=out_a)
b_v.click(video_to_language, inputs=[video, language_v], outputs=out_v)
b_d.click(depth_to_language, inputs=[depth, language_d], outputs=out_d)
b_t.click(thermal_to_language, inputs=[thermal, language_t], outputs=out_t)
demo.launch()