-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapply_gains.m
188 lines (150 loc) · 6.75 KB
/
apply_gains.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
clear; close all
%% Set simulation variables
nsr = 0.05;
err = 0.02;
dam_ = 0.70;
sensor = "dis";
show_plots = false;
%% Compute results
% base_dir = sprintf("simulation/SYSID/model_error_%03d_%s", err*100, sensor);
base_dir = sprintf("simulation/SYSID/t_model_error_%03d_%s", err*100, sensor);
load(sprintf("%s/00_000_%03d", base_dir, nsr*100))
load(fullfile(base_dir, "SetUp.mat"))
Kg = ReferenceModels.Kg;
Cg = ReferenceModels.Cg;
Mg = ReferenceModels.Mg;
B2 = GeneralParameters.B2;
cdis = GeneralParameters.cdis;
B_strain = GeneralParameters.B_strain;
n_dof = GeneralParameters.n_dof;
idx = GeneralParameters.idx;
SS_exact = ReferenceModels.SS_exact;
poles = 1:2:11;
elements = 1:14;
s_vals = [];
for damel = elements
tot_runs = 1;
dam = [damel, dam_];
% load simulation results
filename = sprintf('%02d_%03d_%03d', dam(1,1), dam(1,2)*100, round(nsr*100,0));
disp("Loading " + filename)
load(fullfile(base_dir, filename))
% Compute all estimated transfer matrices
n_sim = numel(SS_est);
n_sim_d = numel(SS_est_d);
n_runs = n_sim * n_sim_d * numel(poles);
strains = zeros(size(B_strain, 1), n_runs, 2);
min_strain_OL = zeros(n_runs, 1);
min_strain_CL = zeros(n_runs, 1);
for pole = poles
% load gainss
% load('gaindesign/01_strain_cond/gains_5_0.120.mat')
load(sprintf("gaindesign/01_strain_cond/gains_%d_1.120.mat", pole))
% load(sprintf("gaindesign/02_sens/constrained/gains_%02d", damel))
% load(sprintf("gaindesign/03_strain_norm/gains_%02d", damel))
% load(sprintf("Ks_%03d_%03d_%03d_%s", err*100, dam_*100, nsr*100, sensor))
s_vals((pole+1)/2) = s;
% account for output type
if sensor == "dis"
s_fac = 1;
elseif sensor == "vel"
s_fac = 1/s;
elseif sensor == "acc"
s_fac = 1 / (s^2);
end
% create new transfer matrices for each s-value
H_arr = cell(n_sim, 1);
H_CL_arr = cell(n_sim, 1);
H_d_arr = cell(n_sim_d, 1);
H_CL_d_arr = cell(n_sim_d, 1);
for run_u = 1:n_sim
H = s_fac * SS_est{run_u}.transfer_matrix(s);
H_arr{run_u, 1} = H;
H_CL_arr{run_u, 1} = (eye(size(H)) + H * K)^-1 * H;
end
for run_d = 1:n_sim_d
H_d = s_fac * SS_est_d{run_d}.transfer_matrix(s);
H_d_arr{run_d, 1} = H_d;
H_CL_d_arr{run_d, 1} = (eye(size(H_d)) + H_d * K)^-1 * H_d; % estimated CL transfer matrix, damaged
end
A_CL_ex = SS_exact.A + SS_exact.B * B2 * K * cdis * SS_exact.C;
Lambda_CL = eig(A_CL_ex); % exact CL poles
% model transfer matrices
H_ref = (Mg*s^2 + Cg*s + Kg)^-1; % reference OL transfer matrix
H_CL_ref = (Mg*s^2 + Cg*s + Kg + B2*K*cdis)^-1; % reference CL transfer matrix
for run_u = 1:n_sim
H = H_arr{run_u};
H_CL = H_CL_arr{run_u};
for run_d = 1:n_sim_d
H_d = H_d_arr{run_d};
H_CL_d = H_CL_d_arr{run_d};
DeltaH = H_d - H; % damage-induced transfer matrix shift (estimated)
[~, ~, V] = svd(DeltaH); % DDLVs
d_OL = zeros(n_dof, 1);
d_OL(idx) = H_ref * B2 * V(:, end); % full OL displacement vector
eps_OL = B_strain * d_OL; % full OL strain vector
DeltaH_CL = H_CL_d - H_CL; % CL damage-induced transfer matrix change
[~, ~, V] = svd(DeltaH_CL); % CLDDLVs
d_CL = zeros(n_dof, 1);
d_CL(idx) = H_CL_ref * B2 * V(:, end); % CL displacement vector
eps_CL = B_strain * d_CL; % cCL strain vector
% Compute strains
strains(:, tot_runs, 1) = abs(eps_OL); % array of characteristic OL strain vectors
strains(:, tot_runs, 2) = abs(eps_CL); % array of characteristic CL strain vectors
eps_norm_OL = abs(eps_OL) / max(abs(eps_OL));
eps_norm_CL = abs(eps_CL) / max(abs(eps_CL));
min_strain_OL(tot_runs, 1) = find(eps_norm_OL == min(eps_norm_OL)); % index of smallest OL strain
min_strain_CL(tot_runs, 1) = find(eps_norm_CL == min(eps_norm_CL)); % index of smallest CL strain
tot_runs = tot_runs + 1;
end
end
%% Results post-processing
n_el = size(B_strain, 1);
clearvars success_rates
for i = 1:n_el
success_rates(i, 1:2) = [sum(min_strain_OL == i), sum(min_strain_CL == i)];
end
success_rates = array2table([[1:n_el]', round(success_rates/size(min_strain_OL, 1)*100)], 'VariableNames',...
{'el', 'OL', 'CL'});
results(damel, :) = success_rates(damel, :);
end
if show_plots
m = mean(strains,2); % mean of each characteristic strain
s_norm = strains ./ max(m); % normalise rows by largest mean value
s_s = std(s_norm,0,2); % standard deviation of un-normalised strain array
m_norm = mean(s_norm,2); % mean of rows normalised by largest mean (the strain field to be plotted)
% Plot results
f2 = figure;
hold on
x = [1:n_el]; % positions of the bars
b1 = bar(x, m_norm(:, 1), 'k');
b2 = bar(x+x(end), m_norm(:,2), 'w');
for i = 1:2*n_el
end_pos = [m_norm(i), m_norm(i)]; % y-values of whiskers
end_pos = end_pos + [s_s(i), -s_s(i)];
end_pos(find(end_pos<0)) = 1e-15;
line([i, i], end_pos, 'Marker', '_', 'Color','r')
end
% legend
l = legend('OL', 'CL', 'Coeff. of variation');
a2 = gca;
a2.GridColor = 'k';
grid on
a2.XGrid = 'off';
% x axis
xticks([1:2*n_el])
xticklabels([string([1:n_el, 1:n_el])])
xlabel("Element number")
a2.XTickLabelRotation = 0;
% y axis
set(gca, 'YScale', 'log')
ylim([1e-3, 2.1])
ylabel("Characteristic strain")
yticks(logspace(-18, 0, 19))
end
% plot_poles(Lambda, lambda_est, s_vals, {'Exact', 'Estimated', 's'});
end
results.delta = results.CL - results.OL;
results
Lambda = ReferenceModels.Lambda;
plot_poles(Lambda, lambda_est, s_vals, {'Exact', 'Estimated', 's'});