Skip to content

mingukkang/Adversarial-AutoEncoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adversarial AutoEncoder(AAE)- Tensorflow

I write the Tensorflow Code for Supervised AAE and SemiSupervised AAE

Enviroment

  • OS: Ubuntu 16.04

  • Graphic Card /RAM : 1080TI /16G

  • Python 3.5

  • Tensorflow-gpu version: 1.4.0rc2

  • OpenCV 3.4.1

Schematic of AAE

Supervised AAE

Drawing


SemiSupervised AAE

Drawing

Code

Supervised Encoder

def sup_encoder(self, X, keep_prob): # encoder for supervised AAE
    
    with tf.variable_scope("sup_encoder", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(X, self.super_n_hidden, name = "dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.super_n_hidden, name="dense_2")), keep_prob)
        net = dense(net, self.n_z, name ="dense_3")
    
    return net

Supervised Decoder

def sup_decoder(self, Z, keep_prob): # decoder for supervised AAE

    with tf.variable_scope("sup_decoder", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(Z, self.super_n_hidden, name = "dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.super_n_hidden, name="dense_2")), keep_prob)
        net = tf.nn.sigmoid(dense(net, self.length, name = "dense_3"))

    return net

Supervised Discriminator

def discriminator(self,Z, keep_prob): # discriminator for supervised AAE

    with tf.variable_scope("discriminator", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(Z, self.super_n_hidden, name = "dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.super_n_hidden, name="dense_2")), keep_prob)
        logits = dense(net, 1, name ="dense_3")

        return logits

Supervised Adversarial AutoEncoder

def Sup_Adversarial_AutoEncoder(self, X, X_noised, Y, z_prior, z_id, keep_prob):

    X_flatten = tf.reshape(X, [-1, self.length])
    X_flatten_noised = tf.reshape(X_noised, [-1, self.length])

    z_generated = self.sup_encoder(X_flatten_noised, keep_prob)
    X_generated = self.sup_decoder(z_generated, keep_prob)

    negative_log_likelihood = tf.reduce_mean(tf.squared_difference(X_generated, X_flatten))

    z_prior = tf.concat([z_prior, z_id], axis = 1)
    z_fake = tf.concat([z_generated, Y], axis = 1)
    D_real_logits = self.discriminator(z_prior, keep_prob)
    D_fake_logits = self.discriminator(z_fake, keep_prob)

    D_loss_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits = D_fake_logits, labels = tf.zeros_like(D_fake_logits))
    D_loss_true = tf.nn.sigmoid_cross_entropy_with_logits(logits = D_real_logits, labels = tf.ones_like(D_real_logits))

    G_loss = tf.nn.sigmoid_cross_entropy_with_logits(logits = D_fake_logits, labels = tf.ones_like(D_fake_logits))

    D_loss = tf.reduce_mean(D_loss_fake) + tf.reduce_mean(D_loss_true)
    G_loss = tf.reduce_mean(G_loss)

    return z_generated, X_generated, negative_log_likelihood, D_loss, G_loss

SemiSupervised Encoder

def semi_encoder(self, X, keep_prob, semi_supervised = False):

    with tf.variable_scope("semi_encoder", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(X, self.semi_n_hidden, name = "dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.semi_n_hidden, name="dense_2")), keep_prob)
        style = dense(net, self.n_z, name ="style")

        if semi_supervised is False:
            labels_generated = tf.nn.softmax(dense(net, self.n_labels, name = "labels"))
        else:
            labels_generated = dense(net, self.n_labels, name = "label_logits")

    return style, labels_generated

SemiSupervised Decoder

def semi_decoder(self, Z, keep_prob):

    with tf.variable_scope("semi_decoder", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(Z, self.semi_n_hidden, name = "dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.semi_n_hidden, name="dense_2")), keep_prob)
        net = tf.nn.sigmoid(dense(net, self.length, name = "dense_3"))

    return net

SemiSupervised z Discriminator

def semi_z_discriminator(self,Z, keep_prob):

    with tf.variable_scope("semi_z_discriminator", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(Z, self.semi_n_hidden, name="dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.semi_n_hidden, name="dense_2")), keep_prob)
        logits = dense(net, 1, name="dense_3")

    return logits

SemiSupervised y Discriminator

def semi_y_discriminator(self, Y, keep_prob):

    with tf.variable_scope("semi_y_discriminator", reuse = tf.AUTO_REUSE):
        net = drop_out(relu(dense(Y, self.semi_n_hidden, name = "dense_1")), keep_prob)
        net = drop_out(relu(dense(net, self.semi_n_hidden, name="dense_2")), keep_prob)
        logits = dense(net, 1, name = "dense_3")

    return logits

SemiSupervised Adversarial AutoEncoder

def Semi_Adversarial_AutoEncoder(self, X, X_noised, labels, labels_cat, z_prior, keep_prob):

    X_flatten = tf.reshape(X, [-1 , self.length])
    X_noised_flatten = tf.reshape(X_noised, [-1, self.length])

    style, labels_softmax = self.semi_encoder(X_noised_flatten, keep_prob, semi_supervised = False)
    latent_inputs = tf.concat([style, labels_softmax], axis = 1)
    X_generated = self.semi_decoder(latent_inputs, keep_prob)

    _, labels_generated = self.semi_encoder(X_noised_flatten, keep_prob, semi_supervised = True)

    D_Y_fake = self.semi_y_discriminator(labels_softmax, keep_prob)
    D_Y_real = self.semi_y_discriminator(labels_cat, keep_prob)

    D_Z_fake = self.semi_z_discriminator(style, keep_prob)
    D_Z_real = self.semi_z_discriminator(z_prior, keep_prob)

    negative_loglikelihood = tf.reduce_mean(tf.squared_difference(X_generated,X_flatten))

    D_loss_y_real = tf.nn.sigmoid_cross_entropy_with_logits(logits=D_Y_real, labels=tf.ones_like(D_Y_real))
    D_loss_y_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits=D_Y_fake, labels=tf.zeros_like(D_Y_fake))
    D_loss_y = tf.reduce_mean(D_loss_y_real) + tf.reduce_mean(D_loss_y_fake)
    D_loss_z_real = tf.nn.sigmoid_cross_entropy_with_logits(logits = D_Z_real, labels = tf.ones_like(D_Z_real))
    D_loss_z_fake = tf.nn.sigmoid_cross_entropy_with_logits(logits = D_Z_fake, labels = tf.zeros_like(D_Z_fake))
    D_loss_z = tf.reduce_mean(D_loss_z_real) + tf.reduce_mean(D_loss_z_fake)


    G_loss_y = tf.nn.sigmoid_cross_entropy_with_logits(logits=D_Y_fake, labels=tf.ones_like(D_Y_fake))
    G_loss_z = tf.nn.sigmoid_cross_entropy_with_logits(logits = D_Z_fake, labels = tf.ones_like(D_Z_fake))
    G_loss = tf.reduce_mean(G_loss_y) + tf.reduce_mean(G_loss_z)

    CE_labels = tf.nn.softmax_cross_entropy_with_logits(logits = labels_generated, labels = labels)
    CE_labels = tf.reduce_mean(CE_labels)


    return style, X_generated, negative_loglikelihood, D_loss_y, D_loss_z, G_loss, CE_labels

Results

1. Restoring

python main.py --model supervised --prior gaussian --n_z 20

or

python main.py --model semi_supervised --prior gaussian --n_z 20
Original Images Restored via Supervised AAE Restored via Semisupervised AAE

2. 2D Latent Space

Target

Gaussian Gaussian Mixture Swiss Roll

Coding Space of Supervised AAE

Test was performed using 10,000 number of test dataset not used for learning.

python main.py --model supervised --prior gaussian_mixture --n_z 2
Gaussian Gaussian Mixture Swiss Roll

3. Manifold Learning Result

Supervised AAE

python main.py --model supervised --prior gaussian_mixture --n_z 2 --PMLR True
Manifold

SemiSupervised AAE

python main.py --model semi_supervised --prior gaussian --n_z 2 --PMLR True

<My own opinion>
The results suggest that when n_z is 2, SemiSupervised AAE can't extract label information from Input image very well.
Manifold with a condition 0 Manifold with a condition 1 Manifold with a condition 2

Reference

Paper

AAE: https://arxiv.org/abs/1511.05644

GAN: https://arxiv.org/abs/1406.2661

Github

https://github.com/hwalsuklee/tensorflow-mnist-AAE

https://github.com/MINGUKKANG/CVAE

About

Tensorflow Code for Adversarial AutoEncoder(AAE)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages