-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
165 lines (141 loc) · 5.13 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from ultralytics import YOLO
import streamlit as st
import cv2
from PIL import Image
import tempfile
def _display_detected_frames(conf, model, st_frame, image):
"""
Display the detected objects on a video frame using the YOLOv8 model.
:param conf (float): Confidence threshold for object detection.
:param model (YOLOv8): An instance of the `YOLOv8` class containing the YOLOv8 model.
:param st_frame (Streamlit object): A Streamlit object to display the detected video.
:param image (numpy array): A numpy array representing the video frame.
:return: None
"""
# Resize the image to a standard size
image = cv2.resize(image, (720, int(720 * (9 / 16))))
# Predict the objects in the image using YOLOv8 model
res = model.predict(image, conf=conf)
# Plot the detected objects on the video frame
res_plotted = res[0].plot()
st_frame.image(res_plotted,
caption='Detected Video',
channels="BGR",
use_column_width=False
)
@st.cache_resource
def load_model(model_path):
"""
Loads a YOLO object detection model from the specified model_path.
Parameters:
model_path (str): The path to the YOLO model file.
Returns:
A YOLO object detection model.
"""
model = YOLO(model_path)
return model
def infer_uploaded_image(conf, model):
"""
Execute inference for uploaded image
:param conf: Confidence of YOLOv8 model
:param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
:return: None
"""
with open('classes.txt', 'r') as f:
classes = f.read().splitlines()
source_img = st.sidebar.file_uploader(
label="Choose an image...",
type=("jpg", "jpeg", "png", 'bmp', 'webp')
)
col1, col2 = st.columns(2)
with col1:
if source_img:
uploaded_image = Image.open(source_img)
# adding the uploaded image to the page with caption
st.image(
image=source_img,
caption="上传的图像",
use_column_width=False,
width = 400
)
if source_img:
if st.button("Execution"):
with st.spinner("Running..."):
res = model.predict(uploaded_image,
conf=conf)
boxes = res[0].boxes
res_plotted = res[0].plot()[:, :, ::-1]
with col2:
st.image(res_plotted,
caption="检测的图像",
use_column_width=False,
width=400
)
try:
with st.expander("Detection Results"):
for box in boxes:
st.write(box.xyxyn)
except Exception as ex:
st.write("No image is uploaded yet!")
st.write(ex)
def infer_uploaded_video(conf, model):
"""
Execute inference for uploaded video
:param conf: Confidence of YOLOv8 model
:param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
:return: None
"""
source_video = st.sidebar.file_uploader(
label="Choose a video..."
)
if source_video:
st.video(source_video)
if source_video:
if st.button("Execution"):
with st.spinner("Running..."):
try:
tfile = tempfile.NamedTemporaryFile()
tfile.write(source_video.read())
vid_cap = cv2.VideoCapture(
tfile.name)
st_frame = st.empty()
while (vid_cap.isOpened()):
success, image = vid_cap.read()
if success:
_display_detected_frames(conf,
model,
st_frame,
image
)
else:
vid_cap.release()
break
except Exception as e:
st.error(f"Error loading video: {e}")
def infer_uploaded_webcam(conf, model):
"""
Execute inference for webcam.
:param conf: Confidence of YOLOv8 model
:param model: An instance of the `YOLOv8` class containing the YOLOv8 model.
:return: None
"""
try:
flag = st.button(
label="Stop running"
)
vid_cap = cv2.VideoCapture(0) # local camera
st_frame = st.empty()
while not flag:
success, image = vid_cap.read()
if success:
_display_detected_frames(
conf,
model,
st_frame,
image
)
else:
vid_cap.release()
break
except Exception as e:
st.error(f"Error loading video: {str(e)}")