-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
378 lines (302 loc) · 15.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os
import time
import gc
import pickle
from tensorflow.keras.preprocessing.sequence import pad_sequences
import torch
from torch import nn
from torch import optim
from torch.utils.data import DataLoader
import numpy as np
import keras_preprocessing
import tqdm
import dgl
from tensorboardX import SummaryWriter
from utils.radam import RiemannianAdam
from utils.metrics import Metrics
from hyphen import Hyphen
from utils.dataset import FakeNewsDataset
from utils.utils import get_evaluation
class HyphenModel():
def __init__(self, platform, max_sen_len, max_com_len, max_sents, max_coms, manifold, log_path, lr, content_module, comment_module, fourier):
self.model = None
self.max_sen_len = max_sen_len
self.max_sents = max_sents
self.max_coms = max_coms
self.max_com_len = max_com_len
self.vocab_size = 0
self.word_embedding = None
self.model = None
self.word_attention_model = None
self.sentence_comment_co_model = None
self.tokenizer = None
self.metrics = Metrics()
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device("cpu")
self.log_path = log_path
self.manifold = manifold
self.lr = lr
self.content_module = content_module
self.comment_module = comment_module
self.fourier = fourier
self.platform = platform
def _fit_on_texts(self, train_x, val_x):
"""
Creates vocabulary set from the news content and the comments
"""
texts = []
texts.extend(train_x)
texts.extend(val_x)
self.tokenizer = keras_preprocessing.text.Tokenizer(num_words=30000)
all_text = []
all_sentences = []
for text in texts:
for sentence in text:
all_sentences.append(sentence)
all_text.extend(all_sentences)
self.tokenizer.fit_on_texts(all_text)
self.vocab_size = len(self.tokenizer.word_index) + 1
self._create_reverse_word_index()
pickle.dump(self.tokenizer, open("tokenizer.pkl", 'wb'))
print("saved tokenizer")
def _create_reverse_word_index(self):
'''
create a dictionary with index as key and corresponding word as value pair.
e.g.
reverse_word_index = {1: 'the', 2: 'to', 3: 'a', 4: 'and', 5: 'of', 6: 'is', 7: 'in', 8: 'that', 9: 'i', ....}
'''
self.reverse_word_index = {value: key for key, value in self.tokenizer.word_index.items()}
def _build_model(self, n_classes=2, batch_size = 12,embedding_dim=100):
'''
This function is used to build Hyphen model.
'''
embeddings_index = {}
self.glove_dir = "{GLOVE EMBEDDING PATH}"# modify glove embedding path
f = open(self.glove_dir, encoding="utf-8")
for line in f:
values = line.split()
word = values[0]
coefs = np.asarray(values[1:], dtype='float32')
embeddings_index[word] = coefs
f.close()
# get word index
word_index = self.tokenizer.word_index
embedding_matrix = np.random.random((len(word_index)+1, embedding_dim))
# create embedding matrix.
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
self.word_hidden_size, self.sent_hidden_size, self.max_sent_length, self.max_word_length, self.graph_hidden= 50, 50, 50, 50, 100
model = Hyphen(embedding_matrix, self.word_hidden_size, self.sent_hidden_size, self.max_sent_length, self.max_word_length,
self.device, graph_hidden = self.graph_hidden, batch_size = batch_size, num_classes = n_classes, max_comment_count= self.max_coms,
max_sentence_count=self.max_sents, manifold = self.manifold, comment_module = self.comment_module,
content_module = self.content_module, fourier = self.fourier)
model = model.to(self.device)
if self.manifold == "Euclidean": #choose the manifold
self.optimizer = optim.Adam(model.parameters(), lr = self.lr)
elif self.manifold == "PoincareBall":
self.optimizer = RiemannianAdam(model.parameters(), lr = self.lr)
self.criterion = nn.CrossEntropyLoss()
return model
def _encode_texts(self, texts):
"""
Pre process the news content sentences to equal length for feeding to GRU
:param texts:
:return:
"""
encoded_texts = np.zeros((len(texts), self.max_sents, self.max_sen_len), dtype='int32')
for i, text in enumerate(texts):
encoded_text = np.array(pad_sequences(
self.tokenizer.texts_to_sequences(text),
maxlen=self.max_sen_len, padding='post', truncating='post', value=0))[:self.max_sents]
encoded_texts[i][:len(encoded_text)] = encoded_text
return encoded_texts
def test(self, train_x, train_y, train_c, val_c, val_x, val_y, sub_train, sub_val, batch_size = 9):
self.tokenizer = pickle.load(open("tokenizer.pkl", 'rb'))
print("Building model....")
self.model = self._build_model(n_classes=train_y.shape[-1], batch_size= batch_size, embedding_dim=100)
print("Model built.")
print("Encoding texts....")
# Create encoded input for content and comments
encoded_train_x = self._encode_texts(train_x)
encoded_val_x = self._encode_texts(val_x)
print("preparing dataset....")
#adding self loops in the dgl graphs
train_c= [dgl.add_self_loop(i) for i in train_c]
val_c= [dgl.add_self_loop(i) for i in val_c]
train_dataset = FakeNewsDataset(encoded_train_x, train_c, train_y, sub_train, self.glove_dir, self.max_sent_length, self.max_word_length)
val_dataset = FakeNewsDataset(encoded_val_x, val_c, val_y, sub_val, self.glove_dir, self.max_sent_length, self.max_word_length)
train_loader = DataLoader(train_dataset, batch_size=batch_size, collate_fn = train_dataset.collate_fn, shuffle=True, drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, collate_fn = val_dataset.collate_fn, shuffle=True, drop_last=True)
self.dataset_sizes = {'train': train_dataset.__len__(), 'val': val_dataset.__len__()}
self.dataloaders = {'train': train_loader, 'val': val_loader}
print("Dataset prepared.")
self.model.load_state_dict(torch.load(f"saved_models/{self.platform}/best_model_{self.manifold}.pt"))
print("Loaded state dict")
self.model.eval()
loss_ls= []
total_samples= 0
As_batch, Ac_batch, predictions_batch = [], [], []
for i, sample in enumerate(self.dataloaders['val']):
content, comment, label, subgraphs = sample
num_sample = len(label)#last batch size
total_samples+=num_sample
comment = comment.to(self.device)
content = content.to(self.device)
label = label.to(self.device)
self.model.content_encoder._init_hidden_state(num_sample)
predictions, As, Ac= self.model(content, comment, subgraphs)
te_loss = self.criterion(predictions, label)
loss_ls.append(te_loss * num_sample)
_, predictions = torch.max(torch.softmax(predictions, dim = -1), 1)
_, label = torch.max(label, 1)
As_batch.extend(As.detach().cpu().numpy())
Ac_batch.extend(Ac.detach().cpu().numpy())
predictions_batch.extend(predictions.detach().cpu().numpy())
return predictions_batch, As_batch, Ac_batch
def train(self, train_x, train_y, train_c, val_c, val_x, val_y, sub_train, sub_val, batch_size=9, epochs=5):
self.writer = SummaryWriter(self.log_path)
# Fit the vocabulary set on the content and comments
self._fit_on_texts(train_x, val_x)
print("Building model....")
self.model = self._build_model(n_classes=train_y.shape[-1], batch_size= batch_size, embedding_dim=100)
print("Model built.")
print("Encoding texts....")
# Create encoded input for content and comments
encoded_train_x = self._encode_texts(train_x)
encoded_val_x = self._encode_texts(val_x)
print("preparing dataset....")
#adding self loops in the dgl graphs
train_c= [dgl.add_self_loop(i) for i in train_c]
val_c= [dgl.add_self_loop(i) for i in val_c]
train_dataset = FakeNewsDataset(encoded_train_x, train_c, train_y, sub_train, self.glove_dir, self.max_sent_length, self.max_word_length)
val_dataset = FakeNewsDataset(encoded_val_x, val_c, val_y, sub_val, self.glove_dir, self.max_sent_length, self.max_word_length)
train_loader = DataLoader(train_dataset, batch_size=batch_size, collate_fn = train_dataset.collate_fn, shuffle=True, drop_last=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size, collate_fn = val_dataset.collate_fn, shuffle=True, drop_last=True)
self.dataset_sizes = {'train': train_dataset.__len__(), 'val': val_dataset.__len__()}
self.dataloaders = {'train': train_loader, 'val': val_loader}
print("Dataset prepared.")
#train model for given epoch
self.run_epoch(epochs)
self.writer.close()
def run_epoch(self, epochs):
'''
Function to train model for given epochs
'''
since = time.time()
clip = 5#modify clip
best_f1 = 0.0
for epoch in range(epochs):
print('Epoch {}/{}'.format(epoch, epochs - 1))
print('-' * 100)
self.metrics.on_train_begin()
self.model.train()
num_iter_per_epoch = len(self.dataloaders['train'])
for iter, sample in enumerate(tqdm.tqdm(self.dataloaders['train'])):
self.optimizer.zero_grad()
content, comment, label, subgraphs = sample
comment = comment.to(self.device)
content = content.to(self.device)
label = label.to(self.device)
self.model.content_encoder._init_hidden_state(len(label))
predictions, As, Ac = self.model(content, comment, subgraphs) #As and Ac are the attention weights we are returning
loss = self.criterion(predictions, label)
loss.backward()
self.optimizer.step()
training_metrics = get_evaluation(torch.max(label, 1)[1].cpu().numpy(), predictions.cpu().detach().numpy(), list_metrics=["accuracy"])
self.writer.add_scalar('Train/Loss', loss, epoch * num_iter_per_epoch + iter)
self.writer.add_scalar('Train/Accuracy', training_metrics["accuracy"], epoch * num_iter_per_epoch + iter)
self.model.eval()
loss_ls= []
total_samples= 0
for i, sample in enumerate(self.dataloaders['val']):
content, comment, label, subgraphs = sample
num_sample = len(label)#last batch size
total_samples+=num_sample
comment = comment.to(self.device)
content = content.to(self.device)
label = label.to(self.device)
self.model.content_encoder._init_hidden_state(num_sample)
predictions, As, Ac= self.model(content, comment, subgraphs)
te_loss = self.criterion(predictions, label)
loss_ls.append(te_loss * num_sample)
_, predictions = torch.max(torch.softmax(predictions, dim = -1), 1)
_, label = torch.max(label, 1)
print(predictions)
predictions= predictions.detach().cpu().numpy()
label = label.detach().cpu().numpy()
self.metrics.on_batch_end(epoch, i, predictions, label)
acc_, f1 = self.metrics.on_epoch_end(epoch)
if f1 > best_f1:
print(f"Best F1: {f1}")
print("Saving best model!")
dst_dir = f'saved_models/{self.platform}/'
os.makedirs(dst_dir, exist_ok = True)
torch.save(self.model.state_dict(), f'{dst_dir}best_model_{self.manifold}.pt')
best_model = self.model
best_f1 = f1
te_loss = sum(loss_ls) / total_samples
self.writer.add_scalar('Test/Loss', te_loss, epoch)
self.writer.add_scalar('Test/Accuracy', acc_, epoch)
self.writer.add_scalar('Test/F1', f1, epoch)
print(f"Best F1: {best_f1}")
print("Training end")
print('-'*100)
def process_atten_weight(self, encoded_text, content_word_level_attentions, sentence_co_attention):
'''
Process attention weights for sentence
'''
no_pad_text_att = []
for k in range(len(encoded_text)):
tmp_no_pad_text_att = []
cur_text = encoded_text[k]
for i in range(len(cur_text)):
sen = cur_text[i]
no_pad_sen_att = []
if sum(sen) == 0:
continue
for j in range(len(sen)):
wd_idx = sen[j]
if wd_idx == 0:
continue
wd = self.reverse_word_index[wd_idx]
no_pad_sen_att.append((wd, content_word_level_attentions[k][i][j]))
tmp_no_pad_text_att.append((no_pad_sen_att, sentence_co_attention[k][i]))
no_pad_text_att.append(tmp_no_pad_text_att)
# Normalize without padding tokens
no_pad_text_att_normalize = None
for npta in no_pad_text_att:
if len(npta) == 0:
continue
sen_att, sen_weight = list(zip(*npta))
new_sen_weight = [float(i) / sum(sen_weight) for i in sen_weight]
new_sen_att = []
for sw in sen_att:
word_list, att_list = list(zip(*sw))
att_list = [float(i) / sum(att_list) for i in att_list]
new_wd_att = list(zip(word_list, att_list))
new_sen_att.append(new_wd_att)
no_pad_text_att_normalize = list(zip(new_sen_att, new_sen_weight))
return no_pad_text_att_normalize
def process_atten_weight_com(self, encoded_text, sentence_co_attention):
'''
Process attention weight for comments
'''
no_pad_text_att = []
for k in range(len(encoded_text)):
tmp_no_pad_text_att = []
cur_text = encoded_text[k]
for i in range(len(cur_text)):
sen = cur_text[i]
no_pad_sen_att = []
if sum(sen) == 0:
continue
for j in range(len(sen)):
wd_idx = sen[j]
if wd_idx == 0:
continue
wd = self.reverse_word_index[wd_idx]
no_pad_sen_att.append(wd)
tmp_no_pad_text_att.append((no_pad_sen_att, sentence_co_attention[k][i]))
no_pad_text_att.append(tmp_no_pad_text_att)
return no_pad_text_att