-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathsquare.jl
231 lines (224 loc) · 10 KB
/
square.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Let S₊ be the cone of symmetric semidefinite matrices in
# the n*(n+1)/2 dimensional space of symmetric R^{nxn} matrices.
# It is well known that S₊ is a self-dual proper cone.
# Let P₊ be the cone of symmetric semidefinite matrices in
# the n^2 dimensional space of R^{nxn} matrices and
# let D₊ be the cone of matrices A such that A+Aᵀ ∈ P₊.
# P₊ is not proper since it is not solid (as it is not n^2 dimensional) so it is not ensured that (P₊)** = P₊
# However this is the case since, as we will see, (P₊)* = D₊ and (D₊)* = P₊.
# * Let us first see why (P₊)* = D₊.
# If B is symmetric, then ⟨A,B⟩ = ⟨Aᵀ,Bᵀ⟩ = ⟨Aᵀ,B⟩ so 2⟨A,B⟩ = ⟨A,B⟩ + ⟨Aᵀ,B⟩ = ⟨A+Aᵀ,B⟩
# Therefore, ⟨A,B⟩ ⩾ 0 for all B ∈ P₊ if and only if ⟨A+Aᵀ,B⟩ ⩾ 0 for all B ∈ P₊
# Since A+Aᵀ is symmetric and we know that S₊ is self-dual, we have shown that (P₊)*
# is the set of matrices A such that A+Aᵀ is PSD
# * Let us now see why (D₊)* = P₊.
# Since A ∈ D₊ implies that Aᵀ ∈ D₊, B ∈ (D₊)* means that ⟨A+Aᵀ,B⟩ ⩾ 0 for any A ∈ D₊ hence B is positive semi-definite.
# To see why it should be symmetric, simply notice that if B[i,j] < B[j,i] then ⟨A,B⟩ can be made arbitrarily small by setting
# A[i,j] += s
# A[j,i] -= s
# with s arbitrarilly large, and A stays in D₊ as A+Aᵀ does not change.
#
# Typically, SDP primal/dual are presented as
# min ⟨C, X⟩ max ∑ b_ky_k
# ⟨A_k, X⟩ = b_k ∀k C - ∑ A_ky_k ∈ S₊
# X ∈ S₊ y_k free ∀k
# Here, as we allow A_i to be non-symmetric, we should rather use
# min ⟨C, X⟩ max ∑ b_ky_k
# ⟨A_k, X⟩ = b_k ∀k C - ∑ A_ky_k ∈ P₊
# X ∈ D₊ y_k free ∀k
# which is implemented as
# min ⟨C, Z⟩ + (C[i,j]-C[j-i])s[i,j] max ∑ b_ky_k
# ⟨A_k, Z⟩ + (A_k[i,j]-A_k[j,i])s[i,j] = b_k ∀k C+Cᵀ - ∑ (A_k+A_kᵀ)y_k ∈ S₊
# s[i,j] free 1 ⩽ i,j ⩽ n with i > j C[i,j]-C[j-i] - ∑ (A_k[i,j]-A_k[j,i])y_k = 0 1 ⩽ i,j ⩽ n with i > j
# Z ∈ S₊ y_k free ∀k
# where "∈ S₊" only look at the diagonal and upper diagonal part.
# In the last primal program, we have the variables Z = X + Xᵀ and a upper triangular matrix S such that X = Z + S - Sᵀ
"""
SquareBridge{T, F<:MOI.AbstractVectorFunction,
G<:MOI.AbstractScalarFunction,
TT<:MOI.AbstractSymmetricMatrixSetTriangle,
ST<:MOI.AbstractSymmetricMatrixSetSquare} <: AbstractBridge
The `SquareBridge` reformulates the constraint of a square matrix to be in `ST`
to a list of equality constraints for pair or off-diagonal entries with
different expressions and a `TT` constraint the upper triangular part of the
matrix.
For instance, the constraint for the matrix
```math
\\begin{pmatrix}
1 & 1 + x & 2 - 3x\\\\
1 + x & 2 + x & 3 - x\\\\
2 - 3x & 2 + x & 2x
\\end{pmatrix}
```
to be PSD can be broken down to the constraint of the symmetric matrix
```math
\\begin{pmatrix}
1 & 1 + x & 2 - 3x\\\\
\\cdot & 2 + x & 3 - x\\\\
\\cdot & \\cdot & 2x
\\end{pmatrix}
```
and the equality constraint between the off-diagonal entries (2, 3) and (3, 2)
``2x == 1``. Note that now symmetrization constraint need to be added between
the off-diagonal entries (1, 2) and (2, 1) or between (1, 3) and (3, 1) since
the expressions are the same.
"""
struct SquareBridge{T, F<:MOI.AbstractVectorFunction,
G<:MOI.AbstractScalarFunction,
TT<:MOI.AbstractSymmetricMatrixSetTriangle,
ST<:MOI.AbstractSymmetricMatrixSetSquare} <: AbstractBridge
square_set::ST
triangle::CI{F, TT}
sym::Vector{Pair{Tuple{Int, Int}, CI{G, MOI.EqualTo{T}}}}
end
function bridge_constraint(::Type{SquareBridge{T, F, G, TT, ST}},
model::MOI.ModelLike, f::F,
s::ST) where {T, F, G, TT, ST}
f_scalars = MOIU.eachscalar(f)
sym = Pair{Tuple{Int, Int}, CI{G, MOI.EqualTo{T}}}[]
dim = MOI.side_dimension(s)
upper_triangle_indices = Int[]
trilen = div(dim * (dim + 1), 2)
sizehint!(upper_triangle_indices, trilen)
k = 0
for j in 1:dim
for i in 1:j
k += 1
push!(upper_triangle_indices, k)
# We constrain the entries (i, j) and (j, i) to be equal
upper = f_scalars[i + (j - 1) * dim]
lower = f_scalars[j + (i - 1) * dim]
diff = MOIU.operate!(-, T, upper, lower)
MOIU.canonicalize!(diff)
# The value 1e-10 was decided in https://github.com/JuliaOpt/JuMP.jl/pull/976
# This avoid generating symmetrization constraints when the
# functions at entries (i, j) and (j, i) are almost identical
if !MOIU.isapprox_zero(diff, 1e-10)
if MOIU.isapprox_zero(diff, 1e-8)
@warn "The entries ($i, $j) and ($j, $i) of the" *
" positive semidefinite constraint are almost" *
" identical but a constraint is added to ensure their" *
" equality because the largest difference between the" *
" coefficients is smaller than 1e-8 but larger than" *
" 1e-10."
end
push!(sym, (i, j) => MOIU.normalize_and_add_constraint(
model, diff, MOI.EqualTo(zero(T)), allow_modify_function=true))
end
end
k += dim - j
end
@assert length(upper_triangle_indices) == trilen
triangle = MOI.add_constraint(model, f_scalars[upper_triangle_indices], MOI.triangular_form(s))
return SquareBridge{T, F, G, TT, ST}(s, triangle, sym)
end
function MOI.supports_constraint(::Type{SquareBridge{T}},
::Type{<:MOI.AbstractVectorFunction},
::Type{<:MOI.AbstractSymmetricMatrixSetSquare}) where T
return true
end
MOIB.added_constrained_variable_types(::Type{<:SquareBridge}) = Tuple{DataType}[]
function MOIB.added_constraint_types(::Type{SquareBridge{T, F, G, TT, ST}}) where {T, F, G, TT, ST}
return [(F, TT), (G, MOI.EqualTo{T})]
end
function concrete_bridge_type(::Type{<:SquareBridge{T}},
F::Type{<:MOI.AbstractVectorFunction},
ST::Type{<:MOI.AbstractSymmetricMatrixSetSquare}) where T
S = MOIU.scalar_type(F)
G = MOIU.promote_operation(-, T, S, S)
TT = MOI.triangular_form(ST)
return SquareBridge{T, F, G, TT, ST}
end
# Attributes, Bridge acting as a model
function MOI.get(::SquareBridge{T, F, G, TT},
::MOI.NumberOfConstraints{F, TT}) where {T, F, G, TT}
return 1
end
function MOI.get(bridge::SquareBridge{T, F, G},
::MOI.NumberOfConstraints{G, MOI.EqualTo{T}}) where {T, F, G}
return length(bridge.sym)
end
function MOI.get(bridge::SquareBridge{T, F, G, TT},
::MOI.ListOfConstraintIndices{F, TT}) where {T, F, G, TT}
return [bridge.triangle]
end
function MOI.get(bridge::SquareBridge{T, F, G},
::MOI.ListOfConstraintIndices{G, MOI.EqualTo{T}}) where {T, F, G}
return map(pair -> pair.second, bridge.sym)
end
# Indices
function MOI.delete(model::MOI.ModelLike, bridge::SquareBridge)
MOI.delete(model, bridge.triangle)
for pair in bridge.sym
MOI.delete(model, pair.second)
end
end
# Attributes, Bridge acting as a constraint
function MOI.get(model::MOI.ModelLike, attr::MOI.ConstraintFunction,
bridge::SquareBridge{T}) where T
tri = MOIU.eachscalar(MOI.get(model, attr, bridge.triangle))
dim = MOI.side_dimension(bridge.square_set)
sqr = Vector{eltype(tri)}(undef, dim^2)
sqrmap(i, j) = (j - 1) * dim + i
k = 0
for j in 1:dim
for i in 1:j
k += 1
sqr[sqrmap(i, j)] = tri[k]
sqr[sqrmap(j, i)] = tri[k]
end
end
for sym in bridge.sym
i, j = sym.first
diff = MOI.get(model, attr, sym.second)
set = MOI.get(model, MOI.ConstraintSet(), sym.second)
upper = sqr[sqrmap(i, j)]
lower = MOIU.operate(-, T, upper, diff)
lower = MOIU.operate!(-, T, lower, MOI.constant(set))
sqr[sqrmap(j, i)] = MOIU.convert_approx(eltype(tri), lower)
end
return MOIU.vectorize(sqr)
end
function MOI.get(::MOI.ModelLike, ::MOI.ConstraintSet, bridge::SquareBridge)
return bridge.square_set
end
function MOI.get(model::MOI.ModelLike, attr::MOI.ConstraintPrimal,
bridge::SquareBridge{T}) where T
tri = MOI.get(model, attr, bridge.triangle)
dim = MOI.side_dimension(bridge.square_set)
sqr = Vector{eltype(tri)}(undef, dim^2)
k = 0
for j in 1:dim
for i in 1:j
k += 1
sqr[i + (j - 1) * dim] = sqr[j + (i - 1) * dim] = tri[k]
end
end
return sqr
end
function MOI.get(model::MOI.ModelLike, attr::MOI.ConstraintDual,
bridge::SquareBridge)
tri = MOI.get(model, attr, bridge.triangle)
dim = MOI.side_dimension(bridge.square_set)
sqr = Vector{eltype(tri)}(undef, dim^2)
k = 0
for j in 1:dim
for i in 1:j
k += 1
# The triangle constraint uses only the upper triangular part
if i == j
sqr[i + (j - 1) * dim] = tri[k]
else
sqr[i + (j - 1) * dim] = 2tri[k]
sqr[j + (i - 1) * dim] = zero(eltype(sqr))
end
end
end
for pair in bridge.sym
i, j = pair.first
dual = MOI.get(model, attr, pair.second)
sqr[i + (j - 1) * dim] += dual
sqr[j + (i - 1) * dim] -= dual
end
return sqr
end