-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfig_args.py
226 lines (181 loc) · 9.27 KB
/
config_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
def get_args(parser,eval=False):
parser.add_argument('--dataroot', type=str, default='./data/')
parser.add_argument('--dataset', type=str, choices=['coco', 'voc','coco1000','nus','vg','news','cub', 'flair', 'flair_fed'], default='coco')
### change default by myself
parser.add_argument('--workers', type=int, default=1)
parser.add_argument('--results_dir', type=str, default='results/')
parser.add_argument('--test_known', type=int, default=0)
# Optimization
parser.add_argument('--optim', type=str, choices=['adam', 'sgd', 'adamw'], default='adam')
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--test_batch_size', type=int, default=-1)
parser.add_argument('--grad_ac_steps', type=int, default=1)
parser.add_argument('--scheduler_step', type=int, default=1000)
parser.add_argument('--scheduler_gamma', type=float, default=0.1)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--int_loss', type=float, default=0.0)
parser.add_argument('--aux_loss', type=float, default=0.0)
parser.add_argument('--loss_type', type=str, choices=['bce', 'mixed','class_ce','soft_margin'], default='bce')
parser.add_argument('--scheduler_type', type=str, choices=['plateau', 'step'], default='plateau')
parser.add_argument('--loss_labels', type=str, choices=['all', 'unk'], default='all')
parser.add_argument('--lr_decay', type=float, default=0)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--max_samples', type=int, default=-1)
parser.add_argument('--max_batches', type=int, default=-1)
parser.add_argument('--warmup_scheduler', action='store_true',help='')
parser.add_argument('--rho', type=float, default=0, help='Parameter controlling the momentum SGD')
# Model
parser.add_argument('--layers', type=int, default=3)
parser.add_argument('--heads', type=int, default=4)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--pos_emb', action='store_true',help='positional encoding')
parser.add_argument('--use_lmt', dest='use_lmt', action='store_true',help='label mask training')
parser.add_argument('--freeze_backbone', action='store_true')
parser.add_argument('--no_x_features', action='store_true')
# CUB
parser.add_argument('--attr_group_dict', type=str, default='')
parser.add_argument('--n_groups', type=int, default=10,help='groups for CUB test time intervention')
# FLAIR
parser.add_argument('--flair_fine', action='store_true', help='whether use the fine-grained labels defined in FLAIR.')
# Image Sizes
# change the default values for FLAIR
parser.add_argument('--scale_size', type=int, default=256)
parser.add_argument('--crop_size', type=int, default=256)
# Testing Models
parser.add_argument('--inference', action='store_true')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--saved_model_name', type=str, default='')
parser.add_argument('--overwrite', action='store_true')
parser.add_argument('--name', type=str, default='')
# FL setting
# TODO:
parser.add_argument('--is_same_initial', type=int, default=1, help='Whether initial all the models with the same parameters in fedavg')
parser.add_argument('--n_parties', type=int, default=20, help='number of workers in a distributed cluster')
parser.add_argument('--comm_round', type=int, default=50, help='number of maximum communication round')
parser.add_argument('--device', type=str, default='cuda:0', help='The device to run the program')
parser.add_argument('--init_seed', type=int, default=514, help="Random seed")
parser.add_argument('--ckpt_path', type=str, default='', help='The path to the trained model (for inference usage)')
# learnable embedding
parser.add_argument('--learn_emb_type', type=str, choices=['ctran', 'onehot', 'clip'], default='ctran')
parser.add_argument('--use_global_guide', action='store_true')
parser.add_argument('--use_only_CLIP_visual', action='store_true')
parser.add_argument('--alg', type=str, default='fedavg',
help='fl algorithms: fedavg/fedprox/scaffold/fednova/moon')
# visualize setting
parser.add_argument('--visualize', action='store_true')
# how to build coarse level CLIP embedding
parser.add_argument('--coarse_prompt_type', type=str, choices=['avg', 'concat'], default='concat')
# aggregation strategies
parser.add_argument('--agg_type', type=str, choices=['fedavg', 'loss'], default='fedavg')
# parser.add_argument('--sample', type=float, default=0.005, help='Sample ratio for each communication round')
args = parser.parse_args()
model_name = args.dataset
if args.dataset == 'voc':
args.num_labels = 20
elif args.dataset == 'nus':
args.num_labels = 1000
elif args.dataset == 'coco1000':
args.num_labels = 1000
elif args.dataset == 'coco':
args.num_labels = 80
elif args.dataset == 'vg':
args.num_labels = 500
elif args.dataset == 'news':
args.num_labels = 500
elif args.dataset == 'cub':
args.num_labels = 112
# add FLAIR dataset
elif args.dataset == 'flair' or args.dataset == 'flair_fed':
if args.flair_fine:
args.num_labels = 1628
else:
args.num_labels = 17
else:
print('dataset not included')
exit()
model_name += '.'+str(args.layers)+'layer'
model_name += '.bsz_{}'.format(int(args.batch_size * args.grad_ac_steps))
model_name += '.'+args.optim+str(args.lr)#.split('.')[1]
if args.dataset == 'flair_fed':
model_name += '.'+str(args.comm_round)+'round'
print(f'Current embedding use:{args.learn_emb_type}')
if args.learn_emb_type == 'ctran':
model_name += '.ctran_emb'
elif args.learn_emb_type == 'onehot':
model_name += '.onehot_emb'
elif args.learn_emb_type == 'clip':
model_name += '.clip_emb'
else:
print('embedding setting is not included')
exit()
if args.use_global_guide:
model_name += '.global_guide'
if args.alg == 'fedavg':
pass
elif args.alg == 'fedprox':
model_name += '.fedprox'
else:
print('FL setting is not implemented now')
exit()
if args.use_only_CLIP_visual:
model_name += '.use_only_CLIP_visual'
if args.agg_type == 'fedavg':
model_name += 'agg_avg'
elif args.agg_type == 'loss':
model_name += 'agg_loss'
else:
print('FL setting is not included')
exit()
if args.coarse_prompt_type == 'avg':
model_name += 'coarse_prompt_avg'
elif args.coarse_prompt_type == 'concat':
model_name += 'coarse_prompt_concat'
else:
print('FL setting is not included')
exit()
if args.use_lmt:
model_name += '.lmt'
args.loss_labels = 'unk'
model_name += '.unk_loss'
args.train_known_labels = 100
else:
args.train_known_labels = 0
if args.pos_emb:
model_name += '.pos_emb'
if args.int_loss != 0.0:
model_name += '.int_loss'+str(args.int_loss).split('.')[1]
if args.aux_loss != 0.0:
model_name += '.aux_loss'+str(args.aux_loss).replace('.','')
if args.no_x_features:
model_name += '.no_x_features'
args.test_known_labels = int(args.test_known*0.01*args.num_labels)
if args.dataset == 'cub':
# reset the TOTAL number of labels to be concepts+classes
model_name += '.step_{}'.format(args.scheduler_step)
model_name += '.'+args.loss_type+'_loss'
args.num_labels = 112+200
args.attr_group_dict = {0: [0, 1, 2, 3], 1: [4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15], 3: [16, 17, 18, 19, 20, 21], 4: [22, 23, 24], 5: [25, 26, 27, 28, 29, 30], 6: [31], 7: [32, 33, 34, 35, 36], 8: [37, 38], 9: [39, 40, 41, 42, 43, 44], 10: [45, 46, 47, 48, 49], 11: [50], 12: [51, 52], 13: [53, 54, 55, 56, 57, 58], 14: [59, 60, 61, 62, 63], 15: [64, 65, 66, 67, 68, 69], 16: [70, 71, 72, 73, 74, 75], 17: [76, 77], 18: [78, 79, 80], 19: [81, 82], 20: [83, 84, 85], 21: [86, 87, 88], 22: [89], 23: [90, 91, 92, 93, 94, 95], 24: [96, 97, 98], 25: [99, 100, 101], 26: [102, 103, 104, 105, 106, 107], 27: [108, 109, 110, 111]}
if args.flair_fine:
model_name += '.fine_grained'
if args.dataset == 'flair_fed':
model_name += f'.client={args.n_parties}'
if args.name != '':
model_name += '.'+args.name
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
model_name = os.path.join(args.results_dir,model_name)
args.model_name = model_name
if args.inference:
args.epochs = 1
if os.path.exists(args.model_name) and (not args.overwrite) and (not 'test' in args.name) and (not eval) and (not args.inference) and (not args.resume):
print(args.model_name)
overwrite_status = input('Already Exists. Overwrite?: ')
if overwrite_status == 'rm':
os.system('rm -rf '+args.model_name)
elif not 'y' in overwrite_status:
exit(0)
elif not os.path.exists(args.model_name):
os.makedirs(args.model_name)
return args