-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
192 lines (161 loc) · 8.48 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import print_function
from __future__ import absolute_import
import keras
import tensorflow as tf
import keras.backend as K
import backbone
weight_decay = 1e-4
class ModelMGPU(keras.Model):
def __init__(self, ser_model, gpus):
pmodel = keras.utils.multi_gpu_model(ser_model, gpus)
self.__dict__.update(pmodel.__dict__)
self._smodel = ser_model
def __getattribute__(self, attrname):
'''Override load and save methods to be used from the serial-model. The
serial-model holds references to the weights in the multi-gpu model.
'''
# return Model.__getattribute__(self, attrname)
if 'load' in attrname or 'save' in attrname:
return getattr(self._smodel, attrname)
return super(ModelMGPU, self).__getattribute__(attrname)
class VladPooling(keras.engine.Layer):
'''
This layer follows the NetVlad, GhostVlad
'''
def __init__(self, mode, k_centers, g_centers=0, **kwargs):
self.k_centers = k_centers
self.g_centers = g_centers
self.mode = mode
super(VladPooling, self).__init__(**kwargs)
def build(self, input_shape):
self.cluster = self.add_weight(shape=[self.k_centers+self.g_centers, input_shape[0][-1]],
name='centers',
initializer='orthogonal')
self.built = True
def compute_output_shape(self, input_shape):
assert input_shape
return (input_shape[0][0], self.k_centers*input_shape[0][-1])
def call(self, x):
# feat : bz x W x H x D, cluster_score: bz X W x H x clusters.
feat, cluster_score = x
num_features = feat.shape[-1]
# softmax normalization to get soft-assignment.
# A : bz x W x H x clusters
max_cluster_score = K.max(cluster_score, -1, keepdims=True)
exp_cluster_score = K.exp(cluster_score - max_cluster_score)
A = exp_cluster_score / K.sum(exp_cluster_score, axis=-1, keepdims = True)
# Now, need to compute the residual, self.cluster: clusters x D
A = K.expand_dims(A, -1) # A : bz x W x H x clusters x 1
feat_broadcast = K.expand_dims(feat, -2) # feat_broadcast : bz x W x H x 1 x D
feat_res = feat_broadcast - self.cluster # feat_res : bz x W x H x clusters x D
weighted_res = tf.multiply(A, feat_res) # weighted_res : bz x W x H x clusters x D
cluster_res = K.sum(weighted_res, [1, 2])
if self.mode == 'gvlad':
cluster_res = cluster_res[:, :self.k_centers, :]
cluster_l2 = K.l2_normalize(cluster_res, -1)
outputs = K.reshape(cluster_l2, [-1, int(self.k_centers) * int(num_features)])
return outputs
def amsoftmax_loss(y_true, y_pred, scale=30, margin=0.35):
y_pred = y_true * (y_pred - margin) + (1 - y_true) * y_pred
y_pred *= scale
return K.categorical_crossentropy(y_true, y_pred, from_logits=True)
def vggvox_resnet2d_icassp(input_dim=(257, 250, 1), num_class=8631, mode='train', args=None):
net = args.net
loss = args.loss
vlad_clusters = args.vlad_cluster
ghost_clusters = args.ghost_cluster
bottleneck_dim = args.bottleneck_dim
aggregation = args.aggregation_mode
mgpu = len(keras.backend.tensorflow_backend._get_available_gpus())
if net == 'resnet34s':
inputs, x = backbone.resnet_2D_v1(input_dim=input_dim, mode=mode)
else:
inputs, x = backbone.resnet_2D_v2(input_dim=input_dim, mode=mode)
# ===============================================
# Fully Connected Block 1
# ===============================================
x_fc = keras.layers.Conv2D(bottleneck_dim, (7, 1),
strides=(1, 1),
activation='relu',
kernel_initializer='orthogonal',
use_bias=True, trainable=True,
kernel_regularizer=keras.regularizers.l2(weight_decay),
bias_regularizer=keras.regularizers.l2(weight_decay),
name='x_fc')(x)
# ===============================================
# Feature Aggregation
# ===============================================
if aggregation == 'avg':
if mode == 'train':
x = keras.layers.AveragePooling2D((1, 5), strides=(1, 1), name='avg_pool')(x)
x = keras.layers.Reshape((-1, bottleneck_dim))(x)
else:
x = keras.layers.GlobalAveragePooling2D(name='avg_pool')(x)
x = keras.layers.Reshape((1, bottleneck_dim))(x)
elif aggregation == 'vlad':
x_k_center = keras.layers.Conv2D(vlad_clusters, (7, 1),
strides=(1, 1),
kernel_initializer='orthogonal',
use_bias=True, trainable=True,
kernel_regularizer=keras.regularizers.l2(weight_decay),
bias_regularizer=keras.regularizers.l2(weight_decay),
name='vlad_center_assignment')(x)
x = VladPooling(k_centers=vlad_clusters, mode='vlad', name='vlad_pool')([x_fc, x_k_center])
elif aggregation == 'gvlad':
x_k_center = keras.layers.Conv2D(vlad_clusters+ghost_clusters, (7, 1),
strides=(1, 1),
kernel_initializer='orthogonal',
use_bias=True, trainable=True,
kernel_regularizer=keras.regularizers.l2(weight_decay),
bias_regularizer=keras.regularizers.l2(weight_decay),
name='gvlad_center_assignment')(x)
x = VladPooling(k_centers=vlad_clusters, g_centers=ghost_clusters, mode='gvlad', name='gvlad_pool')([x_fc, x_k_center])
else:
raise IOError('==> unknown aggregation mode')
# ===============================================
# Fully Connected Block 2
# ===============================================
x = keras.layers.Dense(bottleneck_dim, activation='relu',
kernel_initializer='orthogonal',
use_bias=True, trainable=True,
kernel_regularizer=keras.regularizers.l2(weight_decay),
bias_regularizer=keras.regularizers.l2(weight_decay),
name='fc6')(x)
# ===============================================
# Softmax Vs AMSoftmax
# ===============================================
if loss == 'softmax':
y = keras.layers.Dense(num_class, activation='softmax',
kernel_initializer='orthogonal',
use_bias=False, trainable=True,
kernel_regularizer=keras.regularizers.l2(weight_decay),
bias_regularizer=keras.regularizers.l2(weight_decay),
name='prediction')(x)
trnloss = 'categorical_crossentropy'
elif loss == 'amsoftmax':
x_l2 = keras.layers.Lambda(lambda x: K.l2_normalize(x, 1))(x)
y = keras.layers.Dense(num_class,
kernel_initializer='orthogonal',
use_bias=False, trainable=True,
kernel_constraint=keras.constraints.unit_norm(),
kernel_regularizer=keras.regularizers.l2(weight_decay),
bias_regularizer=keras.regularizers.l2(weight_decay),
name='prediction')(x_l2)
trnloss = amsoftmax_loss
else:
raise IOError('==> unknown loss.')
if mode == 'eval':
y = keras.layers.Lambda(lambda x: keras.backend.l2_normalize(x, axis=1))(x)
model = keras.models.Model(inputs=inputs, outputs=y, name='vggvox_resnet2D_{}_{}'.format(loss, aggregation))
if mode == 'train':
if mgpu > 1:
model = ModelMGPU(model, gpus=mgpu)
# set up optimizer.
if args.optimizer == 'adam':
opt = keras.optimizers.Adam(lr=1e-3)
elif args.optimizer == 'sgd':
opt = keras.optimizers.SGD(lr=0.1, momentum=0.9, decay=0.0, nesterov=True)
else:
raise IOError('==> unknown optimizer type')
model.compile(optimizer=opt, loss=trnloss, metrics=['acc'])
return model