forked from yxlllc/DDSP-SVC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflask_api_diff.py
204 lines (171 loc) · 7.5 KB
/
flask_api_diff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import io
import logging
import torch
import numpy as np
import slicer
import soundfile as sf
import librosa
from flask import Flask, request, send_file
from flask_cors import CORS
from ddsp.vocoder import load_model, F0_Extractor, Volume_Extractor, Units_Encoder
from ddsp.core import upsample
from diffusion.infer_gt_mel import DiffGtMel
from enhancer import Enhancer
from ast import literal_eval
app = Flask(__name__)
CORS(app)
logging.getLogger("numba").setLevel(logging.WARNING)
@app.route("/voiceChangeModel", methods=["POST"])
def voice_change_model():
request_form = request.form
wave_file = request.files.get("sample", None)
raw_sample = int(float(request_form.get("sampleRate", 0)))
# get fSafePrefixPadLength
f_safe_prefix_pad_length = float(request_form.get("fSafePrefixPadLength", 0))
print("f_safe_prefix_pad_length:" + str(f_safe_prefix_pad_length))
if f_safe_prefix_pad_length > 0.025:
silence_front = f_safe_prefix_pad_length
else:
silence_front = 0
# get sample_method
sample_method = str(request_form.get("sample_method", None))
if sample_method == 'None':
sample_method = 'pndm'
else:
sample_method = 'dpm-solver'
print(f'sample_method:{sample_method}')
# get speed_up
speed_up = int(float(request_form.get("sample_interval", 20)))
print(f'speed_up:{speed_up}')
# get skip_steps
skip_steps = int(float(request_form.get("skip_steps", 0)))
print(f'skip_steps:{skip_steps}')
kstep = 1000 - skip_steps
if kstep < speed_up:
kstep = 300
# 变调信息
key = float(request_form.get("fPitchChange", 0))
# 获取spk_id
raw_speak_id = str(request_form.get("sSpeakId", 0))
print("speak_id:" + raw_speak_id)
# http获得wav文件并转换
input_wav_read = io.BytesIO(wave_file.read())
# 模型推理
_audio, _model_sr = svc_model.infer(
input_wav=input_wav_read,
pitch_adjust=key,
spk_id=raw_speak_id,
safe_prefix_pad_length=silence_front,
acc=speed_up,
k_step=kstep,
method=sample_method
)
if raw_sample != _model_sr:
tar_audio = librosa.resample(_audio, _model_sr, raw_sample)
else:
tar_audio = _audio
# 返回音频
out_wav_path = io.BytesIO()
sf.write(out_wav_path, tar_audio, raw_sample, format="wav")
out_wav_path.seek(0)
return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
class SvcD3SP:
def __init__(self, ddsp_checkpoint_path, diff_checkpoint_path, input_pitch_extractor, f0_min, f0_max):
self.model_path = ddsp_checkpoint_path
self.input_pitch_extractor = input_pitch_extractor
self.f0_min = f0_min
self.f0_max = f0_max
self.threhold = -60
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
# load ddsp model
self.model, self.args = load_model(self.model_path, device=self.device)
# load diff_model
self.diff_model = DiffGtMel()
self.diff_model.flush_model(diff_checkpoint_path, self.args)
# load units encoder
if self.args.data.encoder == 'cnhubertsoftfish':
cnhubertsoft_gate = self.args.data.cnhubertsoft_gate
else:
cnhubertsoft_gate = 10
self.units_encoder = Units_Encoder(
self.args.data.encoder,
self.args.data.encoder_ckpt,
self.args.data.encoder_sample_rate,
self.args.data.encoder_hop_size,
cnhubertsoft_gate=cnhubertsoft_gate,
device=self.device
)
def infer(self, input_wav, pitch_adjust, spk_id, safe_prefix_pad_length, acc, k_step, method):
print("Infer!")
# load input
audio, sample_rate = librosa.load(input_wav, sr=None, mono=True)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio)
hop_size = self.args.data.block_size * sample_rate / self.args.data.sampling_rate
# safe front silence
if safe_prefix_pad_length > 0.03:
silence_front = safe_prefix_pad_length - 0.03
else:
silence_front = 0
# extract f0
pitch_extractor = F0_Extractor(
self.input_pitch_extractor,
sample_rate,
hop_size,
float(self.f0_min),
float(self.f0_max)
)
f0 = pitch_extractor.extract(audio, uv_interp=True, device=self.device, silence_front=silence_front)
f0 = torch.from_numpy(f0).float().to(self.device).unsqueeze(-1).unsqueeze(0)
f0 = f0 * 2 ** (float(pitch_adjust) / 12)
# extract volume
volume_extractor = Volume_Extractor(hop_size)
volume = volume_extractor.extract(audio)
mask = (volume > 10 ** (float(self.threhold) / 20)).astype('float')
mask = np.pad(mask, (4, 4), constant_values=(mask[0], mask[-1]))
mask = np.array([np.max(mask[n: n + 9]) for n in range(len(mask) - 8)])
mask = torch.from_numpy(mask).float().to(self.device).unsqueeze(-1).unsqueeze(0)
mask = upsample(mask, self.args.data.block_size).squeeze(-1)
volume = torch.from_numpy(volume).float().to(self.device).unsqueeze(-1).unsqueeze(0)
# extract units
audio_t = torch.from_numpy(audio).float().unsqueeze(0).to(self.device)
units = self.units_encoder.encode(audio_t, sample_rate, hop_size)
# spk_id or spk_mix_dict
if str.isdigit(spk_id):
spk_id = int(spk_id)
spk_mix_dict = None
else:
spk_mix_dict = literal_eval(spk_id)
spk_id = 1
spk_id = torch.LongTensor(np.array([[spk_id]])).to(self.device)
# forward and return the output
with torch.no_grad():
output, _, (s_h, s_n) = self.model(units, f0, volume, spk_id=spk_id, spk_mix_dict=spk_mix_dict)
output = self.diff_model.infer(output, f0, units, volume, acc=acc, spk_id=spk_id, k_step=k_step,
method=method, silence_front=silence_front,
use_silence=diff_jump_silence_front, spk_mix_dict=spk_mix_dict)
output *= mask
output_sample_rate = self.args.data.sampling_rate
output = output.squeeze().cpu().numpy()
return output, output_sample_rate
if __name__ == "__main__":
# 与冷月佬的GUI搭配使用,仓库地址:https://github.com/fishaudio/realtime-vc-gui
# 或许还能和串佬的插件搭配(但是...已经删库了,无法测试(悲))
# 此后端只能用于ddsp和diff都使用的浅扩散模式
# ---------------------以下是ddsp部分的配置----------------------
# config和模型得同一目录。
ddsp_checkpoint_path = "exp_old/ddsp-test3/model_300000.pt"
# ---------------------以下是diff部分的配置----------------------
# config和模型得同一目录。
diff_checkpoint_path = "exp_old/diffusion-test3/model_400000.pt"
# 扩散部分完全不合成安全区,打开可以减少硬件压力并加速,但是会损失合成效果
diff_jump_silence_front = False
# ---------------------以下是其 他部分的配置----------------------
# f0提取器,有 parselmouth, dio, harvest, crepe
select_pitch_extractor = 'crepe'
# f0范围限制(Hz)
limit_f0_min = 50
limit_f0_max = 1100
svc_model = SvcD3SP(ddsp_checkpoint_path, diff_checkpoint_path, select_pitch_extractor, limit_f0_min, limit_f0_max)
# 此处与vst插件对应,端口必须接上。
app.run(port=6844, host="0.0.0.0", debug=False, threaded=False)