forked from yxlllc/DDSP-SVC
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathenhancer.py
115 lines (97 loc) · 4.77 KB
/
enhancer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import numpy as np
import torch
import torch.nn.functional as F
from nsf_hifigan.nvSTFT import STFT
from nsf_hifigan.models import load_model
from torchaudio.transforms import Resample
class Enhancer:
def __init__(self, enhancer_type, enhancer_ckpt, device=None):
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
if enhancer_type == 'nsf-hifigan':
self.enhancer = NsfHifiGAN(enhancer_ckpt, device=self.device)
else:
raise ValueError(f" [x] Unknown enhancer: {enhancer_type}")
self.resample_kernel = {}
self.enhancer_sample_rate = self.enhancer.sample_rate()
self.enhancer_hop_size = self.enhancer.hop_size()
def enhance(self,
audio, # 1, T
sample_rate,
f0, # 1, n_frames, 1
hop_size,
adaptive_key = 0,
silence_front = 0
):
# enhancer start time
start_frame = int(silence_front * sample_rate / hop_size)
real_silence_front = start_frame * hop_size / sample_rate
audio = audio[:, int(np.round(real_silence_front * sample_rate)) : ]
f0 = f0[: , start_frame :, :]
# adaptive parameters
if adaptive_key == 'auto':
adaptive_key = 12 * np.log2(float(torch.max(f0) / 760))
adaptive_key = max(0, np.ceil(adaptive_key))
print('auto_adaptive_key: ' + str(int(adaptive_key)))
else:
adaptive_key = float(adaptive_key)
adaptive_factor = 2 ** ( -adaptive_key / 12)
adaptive_sample_rate = 100 * int(np.round(self.enhancer_sample_rate / adaptive_factor / 100))
real_factor = self.enhancer_sample_rate / adaptive_sample_rate
# resample the ddsp output
if sample_rate == adaptive_sample_rate:
audio_res = audio
else:
key_str = str(sample_rate) + str(adaptive_sample_rate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(sample_rate, adaptive_sample_rate, lowpass_filter_width = 128).to(self.device)
audio_res = self.resample_kernel[key_str](audio)
n_frames = int(audio_res.size(-1) // self.enhancer_hop_size + 1)
# resample f0
if hop_size == self.enhancer_hop_size and sample_rate == self.enhancer_sample_rate and sample_rate == adaptive_sample_rate:
f0_res = f0.squeeze(-1) # 1, n_frames
else:
f0_np = f0.squeeze(0).squeeze(-1).cpu().numpy()
f0_np *= real_factor
time_org = (hop_size / sample_rate) * np.arange(len(f0_np)) / real_factor
time_frame = (self.enhancer_hop_size / self.enhancer_sample_rate) * np.arange(n_frames)
f0_res = np.interp(time_frame, time_org, f0_np, left=f0_np[0], right=f0_np[-1])
f0_res = torch.from_numpy(f0_res).unsqueeze(0).float().to(self.device) # 1, n_frames
# enhance
enhanced_audio, enhancer_sample_rate = self.enhancer(audio_res, f0_res)
# resample the enhanced output
if adaptive_sample_rate != enhancer_sample_rate:
key_str = str(adaptive_sample_rate) + str(enhancer_sample_rate)
if key_str not in self.resample_kernel:
self.resample_kernel[key_str] = Resample(adaptive_sample_rate, enhancer_sample_rate, lowpass_filter_width = 128).to(self.device)
enhanced_audio = self.resample_kernel[key_str](enhanced_audio)
# pad the silence frames
if start_frame > 0:
enhanced_audio = F.pad(enhanced_audio, (int(np.round(enhancer_sample_rate * real_silence_front)), 0))
return enhanced_audio, enhancer_sample_rate
class NsfHifiGAN(torch.nn.Module):
def __init__(self, model_path, device=None):
super().__init__()
if device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = device
print('| Load HifiGAN: ', model_path)
self.model, self.h = load_model(model_path, device=self.device)
self.stft = STFT(
self.h.sampling_rate,
self.h.num_mels,
self.h.n_fft,
self.h.win_size,
self.h.hop_size,
self.h.fmin,
self.h.fmax)
def sample_rate(self):
return self.h.sampling_rate
def hop_size(self):
return self.h.hop_size
def forward(self, audio, f0):
with torch.no_grad():
mel = self.stft.get_mel(audio)
enhanced_audio = self.model(mel, f0[:,:mel.size(-1)])
return enhanced_audio, self.h.sampling_rate