-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrand.py
40 lines (33 loc) · 945 Bytes
/
rand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from flashfftconv import FlashDepthWiseConv1d
import torch.nn as nn
import torch
conv1d_torch = nn.Conv1d(
in_channels=512*3,
out_channels=512*3,
kernel_size=3,
groups=512*3,
padding=2,
dtype=torch.float32
).cuda()
flash_conv1d = FlashDepthWiseConv1d(
channels=512*3,
kernel_size=3,
padding=1,
weights=conv1d_torch.weight,
bias=conv1d_torch.bias,
dtype=torch.float32
).cuda()
x = torch.rand(1, 1536, 2048, requires_grad=True).cuda()
y = torch.rand(1, 1536, 2048, requires_grad=True).cuda()
out_torch = conv1d_torch(x)
out_flash = flash_conv1d(x)
criterion = nn.MSELoss().cuda()
optimizer = torch.optim.AdamW(flash_conv1d.parameters())
scaler = torch.cuda.amp.GradScaler()
with torch.autocast(device_type='cuda', dtype=torch.float16):
optimizer.zero_grad()
logits = flash_conv1d(x)
loss = criterion(logits, y)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()