-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbench2.pvs
54 lines (40 loc) · 1.13 KB
/
bench2.pvs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
bench2 : THEORY
BEGIN
% We use the Lehmer random number generator
% with the following parameters
% n = 59557 big prime number picked from
% http://primes.utm.edu/lists/small/10000.txt
% length = 1000
% g = 12345
% X_0 = 9876
Val : TYPE+ = subrange(0, 59557)
Ind : TYPE+ = below(10000)
Arr : TYPE+ = [ Ind -> Val ]
A : VAR Arr
i : VAR Ind
v : VAR Val
re:[Val -> Val] = rem(59557)
init(A, i, v): RECURSIVE Arr =
let B = A with [(i) := v] in
if i >= 9999 then B
else init(B, i+1, re(12345 * v) ) endif
MEASURE 9999 - i
J :Arr = lambda(k:Ind): 9999 - k
Z :Arr = lambda(x:Ind) : 0
T :Arr = init(Z, 0, 9876)
insert(A, v, i): RECURSIVE Arr =
IF (i = 0 OR v >= A(i - 1))
THEN A WITH [(i) := v]
ELSE insert(A WITH [(i) := A(i - 1)], v, i - 1)
ENDIF
MEASURE i
insort_rec(A, (n:upto(10000)) ): RECURSIVE Arr =
IF n < 10000 THEN
let An = A(n) in
insort_rec( insert(A, An, n), n + 1 )
ELSE A ENDIF
MEASURE 10000 - n
insort(A): Arr = insort_rec(A, 0)
tsort: Val = insort(T)(0)
jsort: Val = insort(J)(0)
END bench2