-
Notifications
You must be signed in to change notification settings - Fork 358
/
model.py
930 lines (782 loc) · 32.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
import time
import torch
from torch import nn
import torch.nn.functional as F
from typing import Iterable, Optional
from funasr.register import tables
from funasr.models.ctc.ctc import CTC
from funasr.utils.datadir_writer import DatadirWriter
from funasr.models.paraformer.search import Hypothesis
from funasr.train_utils.device_funcs import force_gatherable
from funasr.losses.label_smoothing_loss import LabelSmoothingLoss
from funasr.metrics.compute_acc import compute_accuracy, th_accuracy
from funasr.utils.load_utils import load_audio_text_image_video, extract_fbank
from utils.ctc_alignment import ctc_forced_align
class SinusoidalPositionEncoder(torch.nn.Module):
""" """
def __int__(self, d_model=80, dropout_rate=0.1):
pass
def encode(
self, positions: torch.Tensor = None, depth: int = None, dtype: torch.dtype = torch.float32
):
batch_size = positions.size(0)
positions = positions.type(dtype)
device = positions.device
log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype, device=device)) / (
depth / 2 - 1
)
inv_timescales = torch.exp(
torch.arange(depth / 2, device=device).type(dtype) * (-log_timescale_increment)
)
inv_timescales = torch.reshape(inv_timescales, [batch_size, -1])
scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape(
inv_timescales, [1, 1, -1]
)
encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
return encoding.type(dtype)
def forward(self, x):
batch_size, timesteps, input_dim = x.size()
positions = torch.arange(1, timesteps + 1, device=x.device)[None, :]
position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device)
return x + position_encoding
class PositionwiseFeedForward(torch.nn.Module):
"""Positionwise feed forward layer.
Args:
idim (int): Input dimenstion.
hidden_units (int): The number of hidden units.
dropout_rate (float): Dropout rate.
"""
def __init__(self, idim, hidden_units, dropout_rate, activation=torch.nn.ReLU()):
"""Construct an PositionwiseFeedForward object."""
super(PositionwiseFeedForward, self).__init__()
self.w_1 = torch.nn.Linear(idim, hidden_units)
self.w_2 = torch.nn.Linear(hidden_units, idim)
self.dropout = torch.nn.Dropout(dropout_rate)
self.activation = activation
def forward(self, x):
"""Forward function."""
return self.w_2(self.dropout(self.activation(self.w_1(x))))
class MultiHeadedAttentionSANM(nn.Module):
"""Multi-Head Attention layer.
Args:
n_head (int): The number of heads.
n_feat (int): The number of features.
dropout_rate (float): Dropout rate.
"""
def __init__(
self,
n_head,
in_feat,
n_feat,
dropout_rate,
kernel_size,
sanm_shfit=0,
lora_list=None,
lora_rank=8,
lora_alpha=16,
lora_dropout=0.1,
):
"""Construct an MultiHeadedAttention object."""
super().__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
# self.linear_q = nn.Linear(n_feat, n_feat)
# self.linear_k = nn.Linear(n_feat, n_feat)
# self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.linear_q_k_v = nn.Linear(in_feat, n_feat * 3)
self.attn = None
self.dropout = nn.Dropout(p=dropout_rate)
self.fsmn_block = nn.Conv1d(
n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False
)
# padding
left_padding = (kernel_size - 1) // 2
if sanm_shfit > 0:
left_padding = left_padding + sanm_shfit
right_padding = kernel_size - 1 - left_padding
self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0)
def forward_fsmn(self, inputs, mask, mask_shfit_chunk=None):
b, t, d = inputs.size()
if mask is not None:
mask = torch.reshape(mask, (b, -1, 1))
if mask_shfit_chunk is not None:
mask = mask * mask_shfit_chunk
inputs = inputs * mask
x = inputs.transpose(1, 2)
x = self.pad_fn(x)
x = self.fsmn_block(x)
x = x.transpose(1, 2)
x += inputs
x = self.dropout(x)
if mask is not None:
x = x * mask
return x
def forward_qkv(self, x):
"""Transform query, key and value.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
Returns:
torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
"""
b, t, d = x.size()
q_k_v = self.linear_q_k_v(x)
q, k, v = torch.split(q_k_v, int(self.h * self.d_k), dim=-1)
q_h = torch.reshape(q, (b, t, self.h, self.d_k)).transpose(
1, 2
) # (batch, head, time1, d_k)
k_h = torch.reshape(k, (b, t, self.h, self.d_k)).transpose(
1, 2
) # (batch, head, time2, d_k)
v_h = torch.reshape(v, (b, t, self.h, self.d_k)).transpose(
1, 2
) # (batch, head, time2, d_k)
return q_h, k_h, v_h, v
def forward_attention(self, value, scores, mask, mask_att_chunk_encoder=None):
"""Compute attention context vector.
Args:
value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
Returns:
torch.Tensor: Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2).
"""
n_batch = value.size(0)
if mask is not None:
if mask_att_chunk_encoder is not None:
mask = mask * mask_att_chunk_encoder
mask = mask.unsqueeze(1).eq(0) # (batch, 1, *, time2)
min_value = -float(
"inf"
) # float(numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min)
scores = scores.masked_fill(mask, min_value)
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0
) # (batch, head, time1, time2)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, value) # (batch, head, time1, d_k)
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
def forward(self, x, mask, mask_shfit_chunk=None, mask_att_chunk_encoder=None):
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q_h, k_h, v_h, v = self.forward_qkv(x)
fsmn_memory = self.forward_fsmn(v, mask, mask_shfit_chunk)
q_h = q_h * self.d_k ** (-0.5)
scores = torch.matmul(q_h, k_h.transpose(-2, -1))
att_outs = self.forward_attention(v_h, scores, mask, mask_att_chunk_encoder)
return att_outs + fsmn_memory
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0):
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
"""
q_h, k_h, v_h, v = self.forward_qkv(x)
if chunk_size is not None and look_back > 0 or look_back == -1:
if cache is not None:
k_h_stride = k_h[:, :, : -(chunk_size[2]), :]
v_h_stride = v_h[:, :, : -(chunk_size[2]), :]
k_h = torch.cat((cache["k"], k_h), dim=2)
v_h = torch.cat((cache["v"], v_h), dim=2)
cache["k"] = torch.cat((cache["k"], k_h_stride), dim=2)
cache["v"] = torch.cat((cache["v"], v_h_stride), dim=2)
if look_back != -1:
cache["k"] = cache["k"][:, :, -(look_back * chunk_size[1]) :, :]
cache["v"] = cache["v"][:, :, -(look_back * chunk_size[1]) :, :]
else:
cache_tmp = {
"k": k_h[:, :, : -(chunk_size[2]), :],
"v": v_h[:, :, : -(chunk_size[2]), :],
}
cache = cache_tmp
fsmn_memory = self.forward_fsmn(v, None)
q_h = q_h * self.d_k ** (-0.5)
scores = torch.matmul(q_h, k_h.transpose(-2, -1))
att_outs = self.forward_attention(v_h, scores, None)
return att_outs + fsmn_memory, cache
class LayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(
input.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
def sequence_mask(lengths, maxlen=None, dtype=torch.float32, device=None):
if maxlen is None:
maxlen = lengths.max()
row_vector = torch.arange(0, maxlen, 1).to(lengths.device)
matrix = torch.unsqueeze(lengths, dim=-1)
mask = row_vector < matrix
mask = mask.detach()
return mask.type(dtype).to(device) if device is not None else mask.type(dtype)
class EncoderLayerSANM(nn.Module):
def __init__(
self,
in_size,
size,
self_attn,
feed_forward,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0,
):
"""Construct an EncoderLayer object."""
super(EncoderLayerSANM, self).__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.norm1 = LayerNorm(in_size)
self.norm2 = LayerNorm(size)
self.dropout = nn.Dropout(dropout_rate)
self.in_size = in_size
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
self.dropout_rate = dropout_rate
def forward(self, x, mask, cache=None, mask_shfit_chunk=None, mask_att_chunk_encoder=None):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = torch.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, mask
residual = x
if self.normalize_before:
x = self.norm1(x)
if self.concat_after:
x_concat = torch.cat(
(
x,
self.self_attn(
x,
mask,
mask_shfit_chunk=mask_shfit_chunk,
mask_att_chunk_encoder=mask_att_chunk_encoder,
),
),
dim=-1,
)
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = stoch_layer_coeff * self.concat_linear(x_concat)
else:
if self.in_size == self.size:
x = residual + stoch_layer_coeff * self.dropout(
self.self_attn(
x,
mask,
mask_shfit_chunk=mask_shfit_chunk,
mask_att_chunk_encoder=mask_att_chunk_encoder,
)
)
else:
x = stoch_layer_coeff * self.dropout(
self.self_attn(
x,
mask,
mask_shfit_chunk=mask_shfit_chunk,
mask_att_chunk_encoder=mask_att_chunk_encoder,
)
)
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + stoch_layer_coeff * self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm2(x)
return x, mask, cache, mask_shfit_chunk, mask_att_chunk_encoder
def forward_chunk(self, x, cache=None, chunk_size=None, look_back=0):
"""Compute encoded features.
Args:
x_input (torch.Tensor): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time).
cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time).
"""
residual = x
if self.normalize_before:
x = self.norm1(x)
if self.in_size == self.size:
attn, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
x = residual + attn
else:
x, cache = self.self_attn.forward_chunk(x, cache, chunk_size, look_back)
if not self.normalize_before:
x = self.norm1(x)
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.feed_forward(x)
if not self.normalize_before:
x = self.norm2(x)
return x, cache
@tables.register("encoder_classes", "SenseVoiceEncoderSmall")
class SenseVoiceEncoderSmall(nn.Module):
"""
Author: Speech Lab of DAMO Academy, Alibaba Group
SCAMA: Streaming chunk-aware multihead attention for online end-to-end speech recognition
https://arxiv.org/abs/2006.01713
"""
def __init__(
self,
input_size: int,
output_size: int = 256,
attention_heads: int = 4,
linear_units: int = 2048,
num_blocks: int = 6,
tp_blocks: int = 0,
dropout_rate: float = 0.1,
positional_dropout_rate: float = 0.1,
attention_dropout_rate: float = 0.0,
stochastic_depth_rate: float = 0.0,
input_layer: Optional[str] = "conv2d",
pos_enc_class=SinusoidalPositionEncoder,
normalize_before: bool = True,
concat_after: bool = False,
positionwise_layer_type: str = "linear",
positionwise_conv_kernel_size: int = 1,
padding_idx: int = -1,
kernel_size: int = 11,
sanm_shfit: int = 0,
selfattention_layer_type: str = "sanm",
**kwargs,
):
super().__init__()
self._output_size = output_size
self.embed = SinusoidalPositionEncoder()
self.normalize_before = normalize_before
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (
output_size,
linear_units,
dropout_rate,
)
encoder_selfattn_layer = MultiHeadedAttentionSANM
encoder_selfattn_layer_args0 = (
attention_heads,
input_size,
output_size,
attention_dropout_rate,
kernel_size,
sanm_shfit,
)
encoder_selfattn_layer_args = (
attention_heads,
output_size,
output_size,
attention_dropout_rate,
kernel_size,
sanm_shfit,
)
self.encoders0 = nn.ModuleList(
[
EncoderLayerSANM(
input_size,
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args0),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
)
for i in range(1)
]
)
self.encoders = nn.ModuleList(
[
EncoderLayerSANM(
output_size,
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
)
for i in range(num_blocks - 1)
]
)
self.tp_encoders = nn.ModuleList(
[
EncoderLayerSANM(
output_size,
output_size,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
)
for i in range(tp_blocks)
]
)
self.after_norm = LayerNorm(output_size)
self.tp_norm = LayerNorm(output_size)
def output_size(self) -> int:
return self._output_size
def forward(
self,
xs_pad: torch.Tensor,
ilens: torch.Tensor,
):
"""Embed positions in tensor."""
masks = sequence_mask(ilens, device=ilens.device)[:, None, :]
xs_pad *= self.output_size() ** 0.5
xs_pad = self.embed(xs_pad)
# forward encoder1
for layer_idx, encoder_layer in enumerate(self.encoders0):
encoder_outs = encoder_layer(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
for layer_idx, encoder_layer in enumerate(self.encoders):
encoder_outs = encoder_layer(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
xs_pad = self.after_norm(xs_pad)
# forward encoder2
olens = masks.squeeze(1).sum(1).int()
for layer_idx, encoder_layer in enumerate(self.tp_encoders):
encoder_outs = encoder_layer(xs_pad, masks)
xs_pad, masks = encoder_outs[0], encoder_outs[1]
xs_pad = self.tp_norm(xs_pad)
return xs_pad, olens
@tables.register("model_classes", "SenseVoiceSmall")
class SenseVoiceSmall(nn.Module):
"""CTC-attention hybrid Encoder-Decoder model"""
def __init__(
self,
specaug: str = None,
specaug_conf: dict = None,
normalize: str = None,
normalize_conf: dict = None,
encoder: str = None,
encoder_conf: dict = None,
ctc_conf: dict = None,
input_size: int = 80,
vocab_size: int = -1,
ignore_id: int = -1,
blank_id: int = 0,
sos: int = 1,
eos: int = 2,
length_normalized_loss: bool = False,
**kwargs,
):
super().__init__()
if specaug is not None:
specaug_class = tables.specaug_classes.get(specaug)
specaug = specaug_class(**specaug_conf)
if normalize is not None:
normalize_class = tables.normalize_classes.get(normalize)
normalize = normalize_class(**normalize_conf)
encoder_class = tables.encoder_classes.get(encoder)
encoder = encoder_class(input_size=input_size, **encoder_conf)
encoder_output_size = encoder.output_size()
if ctc_conf is None:
ctc_conf = {}
ctc = CTC(odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf)
self.blank_id = blank_id
self.sos = sos if sos is not None else vocab_size - 1
self.eos = eos if eos is not None else vocab_size - 1
self.vocab_size = vocab_size
self.ignore_id = ignore_id
self.specaug = specaug
self.normalize = normalize
self.encoder = encoder
self.error_calculator = None
self.ctc = ctc
self.length_normalized_loss = length_normalized_loss
self.encoder_output_size = encoder_output_size
self.lid_dict = {"auto": 0, "zh": 3, "en": 4, "yue": 7, "ja": 11, "ko": 12, "nospeech": 13}
self.lid_int_dict = {24884: 3, 24885: 4, 24888: 7, 24892: 11, 24896: 12, 24992: 13}
self.textnorm_dict = {"withitn": 14, "woitn": 15}
self.textnorm_int_dict = {25016: 14, 25017: 15}
self.embed = torch.nn.Embedding(7 + len(self.lid_dict) + len(self.textnorm_dict), input_size)
self.emo_dict = {"unk": 25009, "happy": 25001, "sad": 25002, "angry": 25003, "neutral": 25004}
self.criterion_att = LabelSmoothingLoss(
size=self.vocab_size,
padding_idx=self.ignore_id,
smoothing=kwargs.get("lsm_weight", 0.0),
normalize_length=self.length_normalized_loss,
)
@staticmethod
def from_pretrained(model:str=None, **kwargs):
from funasr import AutoModel
model, kwargs = AutoModel.build_model(model=model, trust_remote_code=True, **kwargs)
return model, kwargs
def forward(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
**kwargs,
):
"""Encoder + Decoder + Calc loss
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
text: (Batch, Length)
text_lengths: (Batch,)
"""
# import pdb;
# pdb.set_trace()
if len(text_lengths.size()) > 1:
text_lengths = text_lengths[:, 0]
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size = speech.shape[0]
# 1. Encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths, text)
loss_ctc, cer_ctc = None, None
loss_rich, acc_rich = None, None
stats = dict()
loss_ctc, cer_ctc = self._calc_ctc_loss(
encoder_out[:, 4:, :], encoder_out_lens - 4, text[:, 4:], text_lengths - 4
)
loss_rich, acc_rich = self._calc_rich_ce_loss(
encoder_out[:, :4, :], text[:, :4]
)
loss = loss_ctc + loss_rich
# Collect total loss stats
stats["loss_ctc"] = torch.clone(loss_ctc.detach()) if loss_ctc is not None else None
stats["loss_rich"] = torch.clone(loss_rich.detach()) if loss_rich is not None else None
stats["loss"] = torch.clone(loss.detach()) if loss is not None else None
stats["acc_rich"] = acc_rich
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((text_lengths + 1).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def encode(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
text: torch.Tensor,
**kwargs,
):
"""Frontend + Encoder. Note that this method is used by asr_inference.py
Args:
speech: (Batch, Length, ...)
speech_lengths: (Batch, )
ind: int
"""
# Data augmentation
if self.specaug is not None and self.training:
speech, speech_lengths = self.specaug(speech, speech_lengths)
# Normalization for feature: e.g. Global-CMVN, Utterance-CMVN
if self.normalize is not None:
speech, speech_lengths = self.normalize(speech, speech_lengths)
lids = torch.LongTensor([[self.lid_int_dict[int(lid)] if torch.rand(1) > 0.2 and int(lid) in self.lid_int_dict else 0 ] for lid in text[:, 0]]).to(speech.device)
language_query = self.embed(lids)
styles = torch.LongTensor([[self.textnorm_int_dict[int(style)]] for style in text[:, 3]]).to(speech.device)
style_query = self.embed(styles)
speech = torch.cat((style_query, speech), dim=1)
speech_lengths += 1
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(speech.size(0), 1, 1)
input_query = torch.cat((language_query, event_emo_query), dim=1)
speech = torch.cat((input_query, speech), dim=1)
speech_lengths += 3
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
return encoder_out, encoder_out_lens
def _calc_ctc_loss(
self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
ys_pad: torch.Tensor,
ys_pad_lens: torch.Tensor,
):
# Calc CTC loss
loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens)
# Calc CER using CTC
cer_ctc = None
if not self.training and self.error_calculator is not None:
ys_hat = self.ctc.argmax(encoder_out).data
cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True)
return loss_ctc, cer_ctc
def _calc_rich_ce_loss(
self,
encoder_out: torch.Tensor,
ys_pad: torch.Tensor,
):
decoder_out = self.ctc.ctc_lo(encoder_out)
# 2. Compute attention loss
loss_rich = self.criterion_att(decoder_out, ys_pad.contiguous())
acc_rich = th_accuracy(
decoder_out.view(-1, self.vocab_size),
ys_pad.contiguous(),
ignore_label=self.ignore_id,
)
return loss_rich, acc_rich
def inference(
self,
data_in,
data_lengths=None,
key: list = ["wav_file_tmp_name"],
tokenizer=None,
frontend=None,
**kwargs,
):
meta_data = {}
if (
isinstance(data_in, torch.Tensor) and kwargs.get("data_type", "sound") == "fbank"
): # fbank
speech, speech_lengths = data_in, data_lengths
if len(speech.shape) < 3:
speech = speech[None, :, :]
if speech_lengths is None:
speech_lengths = speech.shape[1]
else:
# extract fbank feats
time1 = time.perf_counter()
audio_sample_list = load_audio_text_image_video(
data_in,
fs=frontend.fs,
audio_fs=kwargs.get("fs", 16000),
data_type=kwargs.get("data_type", "sound"),
tokenizer=tokenizer,
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
speech, speech_lengths = extract_fbank(
audio_sample_list, data_type=kwargs.get("data_type", "sound"), frontend=frontend
)
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item() * frontend.frame_shift * frontend.lfr_n / 1000
)
speech = speech.to(device=kwargs["device"])
speech_lengths = speech_lengths.to(device=kwargs["device"])
language = kwargs.get("language", "auto")
language_query = self.embed(
torch.LongTensor(
[[self.lid_dict[language] if language in self.lid_dict else 0]]
).to(speech.device)
).repeat(speech.size(0), 1, 1)
use_itn = kwargs.get("use_itn", False)
output_timestamp = kwargs.get("output_timestamp", False)
textnorm = kwargs.get("text_norm", None)
if textnorm is None:
textnorm = "withitn" if use_itn else "woitn"
textnorm_query = self.embed(
torch.LongTensor([[self.textnorm_dict[textnorm]]]).to(speech.device)
).repeat(speech.size(0), 1, 1)
speech = torch.cat((textnorm_query, speech), dim=1)
speech_lengths += 1
event_emo_query = self.embed(torch.LongTensor([[1, 2]]).to(speech.device)).repeat(
speech.size(0), 1, 1
)
input_query = torch.cat((language_query, event_emo_query), dim=1)
speech = torch.cat((input_query, speech), dim=1)
speech_lengths += 3
# Encoder
encoder_out, encoder_out_lens = self.encoder(speech, speech_lengths)
if isinstance(encoder_out, tuple):
encoder_out = encoder_out[0]
# c. Passed the encoder result and the beam search
ctc_logits = self.ctc.log_softmax(encoder_out)
if kwargs.get("ban_emo_unk", False):
ctc_logits[:, :, self.emo_dict["unk"]] = -float("inf")
results = []
b, n, d = encoder_out.size()
if isinstance(key[0], (list, tuple)):
key = key[0]
if len(key) < b:
key = key * b
for i in range(b):
x = ctc_logits[i, : encoder_out_lens[i].item(), :]
yseq = x.argmax(dim=-1)
yseq = torch.unique_consecutive(yseq, dim=-1)
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"1best_recog"]
mask = yseq != self.blank_id
token_int = yseq[mask].tolist()
# Change integer-ids to tokens
text = tokenizer.decode(token_int)
if ibest_writer is not None:
ibest_writer["text"][key[i]] = text
if output_timestamp:
from itertools import groupby
timestamp = []
tokens = tokenizer.text2tokens(text)[4:]
logits_speech = self.ctc.softmax(encoder_out)[i, 4:encoder_out_lens[i].item(), :]
pred = logits_speech.argmax(-1).cpu()
logits_speech[pred==self.blank_id, self.blank_id] = 0
align = ctc_forced_align(
logits_speech.unsqueeze(0).float(),
torch.Tensor(token_int[4:]).unsqueeze(0).long().to(logits_speech.device),
(encoder_out_lens-4).long(),
torch.tensor(len(token_int)-4).unsqueeze(0).long().to(logits_speech.device),
ignore_id=self.ignore_id,
)
pred = groupby(align[0, :encoder_out_lens[0]])
_start = 0
token_id = 0
ts_max = encoder_out_lens[i] - 4
for pred_token, pred_frame in pred:
_end = _start + len(list(pred_frame))
if pred_token != 0:
ts_left = max((_start*60-30)/1000, 0)
ts_right = min((_end*60-30)/1000, (ts_max*60-30)/1000)
timestamp.append([tokens[token_id], ts_left, ts_right])
token_id += 1
_start = _end
result_i = {"key": key[i], "text": text, "timestamp": timestamp}
results.append(result_i)
else:
result_i = {"key": key[i], "text": text}
results.append(result_i)
return results, meta_data
def export(self, **kwargs):
from export_meta import export_rebuild_model
if "max_seq_len" not in kwargs:
kwargs["max_seq_len"] = 512
models = export_rebuild_model(model=self, **kwargs)
return models