This repository has been archived by the owner on Sep 16, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 429
/
Copy pathtrain.py
253 lines (210 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
"""Training script for the DeepLab-ResNet network on the PASCAL VOC dataset
for semantic image segmentation.
This script trains the model using augmented PASCAL VOC,
which contains approximately 10000 images for training and 1500 images for validation.
"""
from __future__ import print_function
import argparse
from datetime import datetime
import os
import sys
import time
import tensorflow as tf
import numpy as np
from deeplab_resnet import DeepLabResNetModel, ImageReader, decode_labels, inv_preprocess, prepare_label
IMG_MEAN = np.array((104.00698793,116.66876762,122.67891434), dtype=np.float32)
BATCH_SIZE = 10
DATA_DIRECTORY = '/home/VOCdevkit'
DATA_LIST_PATH = './dataset/train.txt'
IGNORE_LABEL = 255
INPUT_SIZE = '321,321'
LEARNING_RATE = 2.5e-4
MOMENTUM = 0.9
NUM_CLASSES = 21
NUM_STEPS = 20001
POWER = 0.9
RANDOM_SEED = 1234
RESTORE_FROM = './deeplab_resnet.ckpt'
SAVE_NUM_IMAGES = 2
SAVE_PRED_EVERY = 1000
SNAPSHOT_DIR = './snapshots/'
WEIGHT_DECAY = 0.0005
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the PASCAL VOC dataset.")
parser.add_argument("--data-list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the dataset.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of images.")
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--not-restore-last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-num-images", type=int, default=SAVE_NUM_IMAGES,
help="How many images to save.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
return parser.parse_args()
def save(saver, sess, logdir, step):
'''Save weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
logdir: path to the snapshots directory.
step: current training step.
'''
model_name = 'model.ckpt'
checkpoint_path = os.path.join(logdir, model_name)
if not os.path.exists(logdir):
os.makedirs(logdir)
saver.save(sess, checkpoint_path, global_step=step)
print('The checkpoint has been created.')
def load(saver, sess, ckpt_path):
'''Load trained weights.
Args:
saver: TensorFlow Saver object.
sess: TensorFlow session.
ckpt_path: path to checkpoint file with parameters.
'''
saver.restore(sess, ckpt_path)
print("Restored model parameters from {}".format(ckpt_path))
def main():
"""Create the model and start the training."""
args = get_arguments()
h, w = map(int, args.input_size.split(','))
input_size = (h, w)
tf.set_random_seed(args.random_seed)
# Create queue coordinator.
coord = tf.train.Coordinator()
# Load reader.
with tf.name_scope("create_inputs"):
reader = ImageReader(
args.data_dir,
args.data_list,
input_size,
args.random_scale,
args.random_mirror,
args.ignore_label,
IMG_MEAN,
coord)
image_batch, label_batch = reader.dequeue(args.batch_size)
# Create network.
net = DeepLabResNetModel({'data': image_batch}, is_training=args.is_training, num_classes=args.num_classes)
# For a small batch size, it is better to keep
# the statistics of the BN layers (running means and variances)
# frozen, and to not update the values provided by the pre-trained model.
# If is_training=True, the statistics will be updated during the training.
# Note that is_training=False still updates BN parameters gamma (scale) and beta (offset)
# if they are presented in var_list of the optimiser definition.
# Predictions.
raw_output = net.layers['fc1_voc12']
# Which variables to load. Running means and variances are not trainable,
# thus all_variables() should be restored.
restore_var = [v for v in tf.global_variables() if 'fc' not in v.name or not args.not_restore_last]
all_trainable = [v for v in tf.trainable_variables() if 'beta' not in v.name and 'gamma' not in v.name]
fc_trainable = [v for v in all_trainable if 'fc' in v.name]
conv_trainable = [v for v in all_trainable if 'fc' not in v.name] # lr * 1.0
fc_w_trainable = [v for v in fc_trainable if 'weights' in v.name] # lr * 10.0
fc_b_trainable = [v for v in fc_trainable if 'biases' in v.name] # lr * 20.0
assert(len(all_trainable) == len(fc_trainable) + len(conv_trainable))
assert(len(fc_trainable) == len(fc_w_trainable) + len(fc_b_trainable))
# Predictions: ignoring all predictions with labels greater or equal than n_classes
raw_prediction = tf.reshape(raw_output, [-1, args.num_classes])
label_proc = prepare_label(label_batch, tf.stack(raw_output.get_shape()[1:3]), num_classes=args.num_classes, one_hot=False) # [batch_size, h, w]
raw_gt = tf.reshape(label_proc, [-1,])
indices = tf.squeeze(tf.where(tf.less_equal(raw_gt, args.num_classes - 1)), 1)
gt = tf.cast(tf.gather(raw_gt, indices), tf.int32)
prediction = tf.gather(raw_prediction, indices)
# Pixel-wise softmax loss.
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=prediction, labels=gt)
l2_losses = [args.weight_decay * tf.nn.l2_loss(v) for v in tf.trainable_variables() if 'weights' in v.name]
reduced_loss = tf.reduce_mean(loss) + tf.add_n(l2_losses)
# Processed predictions: for visualisation.
raw_output_up = tf.image.resize_bilinear(raw_output, tf.shape(image_batch)[1:3,])
raw_output_up = tf.argmax(raw_output_up, dimension=3)
pred = tf.expand_dims(raw_output_up, dim=3)
# Image summary.
images_summary = tf.py_func(inv_preprocess, [image_batch, args.save_num_images, IMG_MEAN], tf.uint8)
labels_summary = tf.py_func(decode_labels, [label_batch, args.save_num_images, args.num_classes], tf.uint8)
preds_summary = tf.py_func(decode_labels, [pred, args.save_num_images, args.num_classes], tf.uint8)
total_summary = tf.summary.image('images',
tf.concat(axis=2, values=[images_summary, labels_summary, preds_summary]),
max_outputs=args.save_num_images) # Concatenate row-wise.
summary_writer = tf.summary.FileWriter(args.snapshot_dir,
graph=tf.get_default_graph())
# Define loss and optimisation parameters.
base_lr = tf.constant(args.learning_rate)
step_ph = tf.placeholder(dtype=tf.float32, shape=())
learning_rate = tf.scalar_mul(base_lr, tf.pow((1 - step_ph / args.num_steps), args.power))
opt_conv = tf.train.MomentumOptimizer(learning_rate, args.momentum)
opt_fc_w = tf.train.MomentumOptimizer(learning_rate * 10.0, args.momentum)
opt_fc_b = tf.train.MomentumOptimizer(learning_rate * 20.0, args.momentum)
grads = tf.gradients(reduced_loss, conv_trainable + fc_w_trainable + fc_b_trainable)
grads_conv = grads[:len(conv_trainable)]
grads_fc_w = grads[len(conv_trainable) : (len(conv_trainable) + len(fc_w_trainable))]
grads_fc_b = grads[(len(conv_trainable) + len(fc_w_trainable)):]
train_op_conv = opt_conv.apply_gradients(zip(grads_conv, conv_trainable))
train_op_fc_w = opt_fc_w.apply_gradients(zip(grads_fc_w, fc_w_trainable))
train_op_fc_b = opt_fc_b.apply_gradients(zip(grads_fc_b, fc_b_trainable))
train_op = tf.group(train_op_conv, train_op_fc_w, train_op_fc_b)
# Set up tf session and initialize variables.
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
# Saver for storing checkpoints of the model.
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=10)
# Load variables if the checkpoint is provided.
if args.restore_from is not None:
loader = tf.train.Saver(var_list=restore_var)
load(loader, sess, args.restore_from)
# Start queue threads.
threads = tf.train.start_queue_runners(coord=coord, sess=sess)
# Iterate over training steps.
for step in range(args.num_steps):
start_time = time.time()
feed_dict = { step_ph : step }
if step % args.save_pred_every == 0:
loss_value, images, labels, preds, summary, _ = sess.run([reduced_loss, image_batch, label_batch, pred, total_summary, train_op], feed_dict=feed_dict)
summary_writer.add_summary(summary, step)
save(saver, sess, args.snapshot_dir, step)
else:
loss_value, _ = sess.run([reduced_loss, train_op], feed_dict=feed_dict)
duration = time.time() - start_time
print('step {:d} \t loss = {:.3f}, ({:.3f} sec/step)'.format(step, loss_value, duration))
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
main()