-
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdisparity.py
executable file
·305 lines (218 loc) · 7.71 KB
/
disparity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python
# encoding: utf-8
from networkx.readwrite import json_graph
from scipy.stats import percentileofscore
from traceback import format_exception
import cProfile
import json
import networkx as nx
import numpy as np
import pandas as pd
import pstats
import random
import sys
DEBUG = False # True
######################################################################
## disparity filter for extracting the multiscale backbone of
## complex weighted networks
def get_nes (graph, label):
"""
find the neighborhood attention set (NES) for the given label
"""
for node_id in graph.nodes():
node = graph.node[node_id]
if node["label"].lower() == label:
return set([node_id]).union(set([id for id in graph.neighbors(node_id)]))
def disparity_integral (x, k):
"""
calculate the definite integral for the PDF in the disparity filter
"""
assert x != 1.0, "x == 1.0"
assert k != 1.0, "k == 1.0"
return ((1.0 - x)**k) / ((k - 1.0) * (x - 1.0))
def get_disparity_significance (norm_weight, degree):
"""
calculate the significance (alpha) for the disparity filter
"""
return 1.0 - ((degree - 1.0) * (disparity_integral(norm_weight, degree) - disparity_integral(0.0, degree)))
def disparity_filter (graph):
"""
implements a disparity filter, based on multiscale backbone networks
https://arxiv.org/pdf/0904.2389.pdf
"""
alpha_measures = []
for node_id in graph.nodes():
node = graph.nodes[node_id]
degree = graph.degree(node_id)
strength = 0.0
for id0, id1 in graph.edges(nbunch=[node_id]):
edge = graph[id0][id1]
strength += edge["weight"]
node["strength"] = strength
for id0, id1 in graph.edges(nbunch=[node_id]):
edge = graph[id0][id1]
norm_weight = edge["weight"] / strength
edge["norm_weight"] = norm_weight
if degree > 1:
try:
if norm_weight == 1.0:
norm_weight -= 0.0001
alpha = get_disparity_significance(norm_weight, degree)
except AssertionError:
report_error("disparity {}".format(repr(node)), fatal=True)
edge["alpha"] = alpha
alpha_measures.append(alpha)
else:
edge["alpha"] = 0.0
for id0, id1 in graph.edges():
edge = graph[id0][id1]
edge["alpha_ptile"] = percentileofscore(alpha_measures, edge["alpha"]) / 100.0
return alpha_measures
######################################################################
## related metrics
def calc_centrality (graph, min_degree=1):
"""
to conserve compute costs, ignore centrality for nodes below `min_degree`
"""
sub_graph = graph.copy()
sub_graph.remove_nodes_from([ n for n, d in list(graph.degree) if d < min_degree ])
centrality = nx.betweenness_centrality(sub_graph, weight="weight")
#centrality = nx.closeness_centrality(sub_graph, distance="distance")
return centrality
def calc_quantiles (metrics, num):
"""
calculate `num` quantiles for the given list
"""
global DEBUG
bins = np.linspace(0, 1, num=num, endpoint=True)
s = pd.Series(metrics)
q = s.quantile(bins, interpolation="nearest")
try:
dig = np.digitize(metrics, q) - 1
except ValueError as e:
print("ValueError:", str(e), metrics, s, q, bins)
sys.exit(-1)
quantiles = []
for idx, q_hi in q.iteritems():
quantiles.append(q_hi)
if DEBUG:
print(idx, q_hi)
return quantiles
def calc_alpha_ptile (alpha_measures, show=True):
"""
calculate the quantiles used to define a threshold alpha cutoff
"""
quantiles = calc_quantiles(alpha_measures, num=10)
num_quant = len(quantiles)
if show:
print("\tptile\talpha")
for i in range(num_quant):
percentile = i / float(num_quant)
print("\t{:0.2f}\t{:0.4f}".format(percentile, quantiles[i]))
return quantiles, num_quant
def cut_graph (graph, min_alpha_ptile=0.5, min_degree=2):
"""
apply the disparity filter to cut the given graph
"""
filtered_set = set([])
for id0, id1 in graph.edges():
edge = graph[id0][id1]
if edge["alpha_ptile"] < min_alpha_ptile:
filtered_set.add((id0, id1))
for id0, id1 in filtered_set:
graph.remove_edge(id0, id1)
filtered_set = set([])
for node_id in graph.nodes():
node = graph.nodes[node_id]
if graph.degree(node_id) < min_degree:
filtered_set.add(node_id)
for node_id in filtered_set:
graph.remove_node(node_id)
######################################################################
## profiling utilities
def start_profiling ():
"""start profiling"""
pr = cProfile.Profile()
pr.enable()
return pr
def stop_profiling (pr):
"""stop profiling and report"""
pr.disable()
s = io.StringIO()
sortby = "cumulative"
ps = pstats.Stats(pr, stream=s).sort_stats(sortby)
ps.print_stats()
print(s.getvalue())
def report_error (cause_string, logger=None, fatal=False):
"""
TODO: errors should go to logger, and not be fatal
"""
etype, value, tb = sys.exc_info()
error_str = "{} {}".format(cause_string, str(format_exception(etype, value, tb, 3)))
if logger:
logger.info(error_str)
else:
print(error_str)
if fatal:
sys.exit(-1)
######################################################################
## graph serialization
def load_graph (graph_path):
"""
load a graph from JSON
"""
with open(graph_path) as f:
data = json.load(f)
graph = json_graph.node_link_graph(data, directed=True)
return graph
def save_graph (graph, graph_path):
"""
save a graph as JSON
"""
with open(graph_path, "w") as f:
data = json_graph.node_link_data(graph)
json.dump(data, f)
######################################################################
## testing
def random_graph (n, k, seed=0):
"""
populate a random graph (with an optional seed) with `n` nodes and
up to `k` edges for each node
"""
graph = nx.DiGraph()
random.seed(seed)
for node_id in range(n):
graph.add_node(node_id, label=str(node_id))
for node_id in range(n):
population = set(range(n)) - set([node_id])
for neighbor in random.sample(population, random.randint(0, k)):
weight = random.random()
graph.add_edge(node_id, neighbor, weight=weight)
return graph
def describe_graph (graph, min_degree=1, show_centrality=False):
"""
describe a graph
"""
print("\ngraph: {} nodes {} edges\n".format(len(graph.nodes()), len(graph.edges())))
if show_centrality:
print(calc_centrality(graph, min_degree))
def main (n=100, k=10, min_alpha_ptile=0.5, min_degree=2):
# generate a random graph (from seed, always the same)
graph = random_graph(n, k)
save_graph(graph, "g.json")
describe_graph(graph, min_degree)
# calculate the multiscale backbone metrics
alpha_measures = disparity_filter(graph)
quantiles, num_quant = calc_alpha_ptile(alpha_measures)
alpha_cutoff = quantiles[round(num_quant * min_alpha_ptile)]
print("\nfilter: percentile {:0.2f}, min alpha {:0.4f}, min degree {}".format(
min_alpha_ptile, alpha_cutoff, min_degree
))
# apply the filter to cut the graph
cut_graph(graph, min_alpha_ptile, min_degree)
save_graph(graph, "h.json")
describe_graph(graph, min_degree)
######################################################################
## main entry point
if __name__ == "__main__":
main()