-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathnetlib.py
182 lines (138 loc) · 6.43 KB
/
netlib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Copyright 2019 Karsten Roth and Biagio Brattoli
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
############################ LIBRARIES ######################################
import torch, os, numpy as np
import torch.nn as nn
import pretrainedmodels as ptm
import pretrainedmodels.utils as utils
import torchvision.models as models
import googlenet
"""============================================================="""
def initialize_weights(model):
"""
Function to initialize network weights.
NOTE: NOT USED IN MAIN SCRIPT.
Args:
model: PyTorch Network
Returns:
Nothing!
"""
for idx,module in enumerate(model.modules()):
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(module, nn.BatchNorm2d):
nn.init.constant_(module.weight, 1)
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(0,0.01)
module.bias.data.zero_()
"""=================================================================================================================================="""
### ATTRIBUTE CHANGE HELPER
def rename_attr(model, attr, name):
"""
Rename attribute in a class. Simply helper function.
Args:
model: General Class for which attributes should be renamed.
attr: str, Name of target attribute.
name: str, New attribute name.
"""
setattr(model, name, getattr(model, attr))
delattr(model, attr)
"""=================================================================================================================================="""
### NETWORK SELECTION FUNCTION
def networkselect(opt):
"""
Selection function for available networks.
Args:
opt: argparse.Namespace, contains all training-specific training parameters.
Returns:
Network of choice
"""
if opt.arch == 'googlenet':
network = GoogLeNet(opt)
elif opt.arch == 'resnet50':
network = ResNet50(opt)
else:
raise Exception('Network {} not available!'.format(opt.arch))
return network
"""=================================================================================================================================="""
class GoogLeNet(nn.Module):
"""
Container for GoogLeNet s.t. it can be used for metric learning.
The Network has been broken down to allow for higher modularity, if one wishes
to target specific layers/blocks directly.
"""
def __init__(self, opt):
"""
Args:
opt: argparse.Namespace, contains all training-specific parameters.
Returns:
Nothing!
"""
super(GoogLeNet, self).__init__()
self.pars = opt
self.model = googlenet.googlenet(num_classes=1000, pretrained='imagenet' if not opt.not_pretrained else False)
for module in filter(lambda m: type(m) == nn.BatchNorm2d, self.model.modules()):
module.eval()
module.train = lambda _: None
rename_attr(self.model, 'fc', 'last_linear')
self.layer_blocks = nn.ModuleList([self.model.inception3a, self.model.inception3b, self.model.maxpool3,
self.model.inception4a, self.model.inception4b, self.model.inception4c,
self.model.inception4d, self.model.inception4e, self.model.maxpool4,
self.model.inception5a, self.model.inception5b, self.model.avgpool])
self.model.last_linear = torch.nn.Linear(self.model.last_linear.in_features, opt.embed_dim)
def forward(self, x):
### Initial Conv Layers
x = self.model.conv3(self.model.conv2(self.model.maxpool1(self.model.conv1(x))))
x = self.model.maxpool2(x)
### Inception Blocks
for layerblock in self.layer_blocks:
x = layerblock(x)
x = x.view(x.size(0), -1)
x = self.model.dropout(x)
mod_x = self.model.last_linear(x)
#No Normalization is used if N-Pair Loss is the target criterion.
return mod_x if self.pars.loss=='npair' else torch.nn.functional.normalize(mod_x, dim=-1)
"""============================================================="""
class ResNet50(nn.Module):
"""
Container for ResNet50 s.t. it can be used for metric learning.
The Network has been broken down to allow for higher modularity, if one wishes
to target specific layers/blocks directly.
"""
def __init__(self, opt, list_style=False, no_norm=False):
super(ResNet50, self).__init__()
self.pars = opt
if not opt.not_pretrained:
print('Getting pretrained weights...')
self.model = ptm.__dict__['resnet50'](num_classes=1000, pretrained='imagenet')
print('Done.')
else:
print('Not utilizing pretrained weights!')
self.model = ptm.__dict__['resnet50'](num_classes=1000, pretrained=None)
for module in filter(lambda m: type(m) == nn.BatchNorm2d, self.model.modules()):
module.eval()
module.train = lambda _: None
self.model.last_linear = torch.nn.Linear(self.model.last_linear.in_features, opt.embed_dim)
self.layer_blocks = nn.ModuleList([self.model.layer1, self.model.layer2, self.model.layer3, self.model.layer4])
def forward(self, x, is_init_cluster_generation=False):
x = self.model.maxpool(self.model.relu(self.model.bn1(self.model.conv1(x))))
for layerblock in self.layer_blocks:
x = layerblock(x)
x = self.model.avgpool(x)
x = x.view(x.size(0),-1)
mod_x = self.model.last_linear(x)
#No Normalization is used if N-Pair Loss is the target criterion.
return mod_x if self.pars.loss=='npair' else torch.nn.functional.normalize(mod_x, dim=-1)