-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathholConstrainedExtensionScript.sml
1025 lines (998 loc) · 39.6 KB
/
holConstrainedExtensionScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
open preamble
open holSyntaxLibTheory holSyntaxTheory holSyntaxExtraTheory holSemanticsTheory holSemanticsExtraTheory holExtensionTheory
val _ = ParseExtras.temp_tight_equality()
val _ = new_theory"holConstrainedExtension"
val mem = ``mem:'U->'U->bool``
val TYPE_SUBST_tyvars_subtype_lemma = prove(
``∀i e ty0. MEM e (tyvars ty0) ⇒
TYPE_SUBST i (Tyvar e) subtype TYPE_SUBST i ty0``,
ntac 2 gen_tac >>
ho_match_mp_tac type_ind >>
rw[tyvars_def,MEM_FOLDR_LIST_UNION] >>
fs[REV_ASSOCD_ALOOKUP] >>
simp[subtype_Tyapp] >>
fs[EVERY_MEM] >>
res_tac >>
BasicProvers.CASE_TAC >> fs[MEM_MAP,PULL_EXISTS] >>
metis_tac[])
val constrainable_update_def = Define`
constrainable_update upd ⇔
∃vars.
FINITE vars ∧
EVERY ($= vars) (MAP (set o tvars) (axioms_of_upd upd)) ∧
EVERY ($= vars) (MAP (set o tyvars o SND) (consts_of_upd upd)) ∧
EVERY (λp. ∀name ty ty'.
VFREE_IN (Const name ty) p ∧
MEM (name,ty') (consts_of_upd upd)
⇒ ty' = ty)
(axioms_of_upd upd) ∧
let all_types =
BIGUNION (set (MAP types_in (axioms_of_upd upd))) ∪
set (MAP SND (consts_of_upd upd)) in
∀name arity.
MEM (name,arity) (types_of_upd upd) ⇒
arity = CARD vars ∧
∀args ty.
Tyapp name args subtype ty ∧ ty ∈ all_types ⇒
args = MAP Tyvar (mlstring_sort (SET_TO_LIST vars))`
val TypeDefn_constrainable = store_thm("TypeDefn_constrainable",
``∀name pred abs rep ctxt.
TypeDefn name pred abs rep updates ctxt ∧
is_std_sig (sigof ctxt) ⇒
constrainable_update (TypeDefn name pred abs rep)``,
rw[updates_cases] >>
`MEM (strlit"fun") (MAP FST (type_list ctxt)) ∧ MEM (strlit"bool") (MAP FST (type_list ctxt))` by (
fs[is_std_sig_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,EXISTS_PROD] >>
metis_tac[] ) >>
`∃repty. typeof pred = Fun repty Bool ∧ (∀x. MEM x (tyvars repty) ⇒ MEM x (tvars pred))` by (
imp_res_tac proves_term_ok >> fs[term_ok_def] >>
imp_res_tac WELLTYPED_LEMMA >> fs[] >> rfs[] >>
rw[] >> imp_res_tac tyvars_typeof_subset_tvars >>
fs[tyvars_def,tvars_def] >>
`MEM x (tyvars (typeof pred))` by simp[tyvars_def] >>
fs[WELLTYPED] >>
imp_res_tac tyvars_typeof_subset_tvars >>
fs[tyvars_def,SUBSET_DEF]) >>
`∀args'. Tyapp name args' ∉ types_in pred ∧ Tyapp name args' ≠ repty ∧ Tyapp name args' ≠ Bool` by (
imp_res_tac proves_term_ok >> fs[term_ok_def] >>
rw[] >>
spose_not_then strip_assume_tac >>
imp_res_tac type_ok_types_in >>
imp_res_tac term_ok_type_ok >>
fs[type_ok_def] >>
rw[] >> rfs[type_ok_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,EXISTS_PROD] >>
metis_tac[] ) >>
simp[constrainable_update_def,ALL_DISTINCT_CARD_LIST_TO_SET] >>
simp[tyvars_def,Q.SPECL[`set s`,`set t`]EXTENSION,MEM_FOLDR_LIST_UNION,MEM_MAP,PULL_EXISTS,EVERY_MAP] >>
conj_tac >- (
simp[conexts_of_upd_def,tvars_def,equation_def,tyvars_def] >>
simp[EXTENSION,MEM_FOLDR_LIST_UNION,MEM_MAP,PULL_EXISTS,tyvars_def,mlstringTheory.implode_explode] >>
rw[EQ_IMP_THM] >> rw[]) >>
conj_tac >- metis_tac[] >>
conj_tac >- (
simp[EVERY_MEM,GSYM mlstring_sort_def] >>
simp[conexts_of_upd_def,GSYM mlstring_sort_def] >>
gen_tac >> strip_tac >> BasicProvers.VAR_EQ_TAC >> rpt gen_tac >>
CONV_TAC(LAND_CONV (LAND_CONV EVAL)) >>
simp[GSYM STRING_SORT_def,GSYM mlstringTheory.implode_def,GSYM mlstring_sort_def] >>
rw[] >>
fs[is_std_sig_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,mlstringTheory.implode_def,EXISTS_PROD] >>
TRY(metis_tac[]) >>
imp_res_tac proves_term_ok >> fs[] >>
fs[term_ok_def] >>
imp_res_tac term_ok_VFREE_IN >>
fs[term_ok_def] >>
imp_res_tac ALOOKUP_MEM >>
metis_tac[]) >>
CHANGED_TAC(ONCE_REWRITE_TAC[GSYM LIST_TO_SET_APPEND]) >>
ONCE_REWRITE_TAC[GSYM tyvars_def] >>
simp[tyvars_Tyapp_MAP_Tyvar] >>
simp[set_MAP_implode_STRING_SORT_MAP_explode] >>
fs[GSYM SUBSET_DEF,SUBSET_UNION_ABSORPTION] >>
simp[GSYM ALL_DISTINCT_CARD_LIST_TO_SET,ALL_DISTINCT_LIST_UNION] >>
simp[set_MAP_implode_STRING_SORT_MAP_explode] >>
simp[mlstring_sort_SET_TO_LIST_set_tvars,GSYM mlstring_sort_def] >>
simp[EVERY_MEM] >>
simp[conexts_of_upd_def,tvars_def,equation_def,tyvars_def] >>
rw[] >> fs[] >> rw[] >> fs[Once subtype_Tyapp] >> TRY(metis_tac[]) >>
rw[] >> fs[Once subtype_Tyapp] >>
fs[Q.ISPEC`Tyvar`(Q.SPEC`l`MEM_MAP)] >> rw[] >> fs[] >>
fs[Once subtype_Tyapp] >> TRY(metis_tac[]) >>
fs[Q.ISPEC`Tyvar`(Q.SPEC`l`MEM_MAP)] >> rw[] >> fs[] >>
simp[GSYM mlstring_sort_def] >>
qmatch_assum_abbrev_tac`aty subtype bty` >>
`type_ok (tysof ctxt) bty` by (
(imp_res_tac proves_term_ok >> fs[term_ok_def] >>
imp_res_tac term_ok_type_ok >> rfs[] >> NO_TAC) ORELSE
(qspec_then`sigof ctxt`mp_tac type_ok_types_in >> simp[] >>
disch_then(match_mp_tac) >>
imp_res_tac proves_term_ok >> fs[term_ok_def] >>
metis_tac[])) >>
`type_ok (tysof ctxt) aty` by metis_tac[subtype_type_ok] >>
fs[Abbr`aty`,type_ok_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,EXISTS_PROD] >>
metis_tac[])
val _ = Parse.type_abbrev("constraints",``:'U list -> ('U list # 'U list) option``)
val constrain_assignment_def = Define`
constrain_assignment cs p ns f =
λname args. case cs args of NONE => f name args
| SOME x => case ALOOKUP (ZIP(ns,p x)) name of NONE => f name args
| SOME v => v`
val _ = Parse.overload_on("constrain_tyass",
``λcs upd. constrain_assignment cs FST (MAP FST (types_of_upd upd))``)
val _ = Parse.overload_on("constrain_tmass",
``λcs upd. constrain_assignment cs SND (MAP FST (consts_of_upd upd))``)
val constrain_interpretation_def = Define`
constrain_interpretation upd cs ((δ,γ):'U interpretation) =
(constrain_tyass cs upd δ,
constrain_tmass cs upd γ)`
val set_tyvars_of_upd_def = new_specification("set_tyvars_of_upd_def",["set_tyvars_of_upd"],
constrainable_update_def |> SPEC_ALL
|> EQ_IMP_RULE |> fst
|> CONV_RULE(HO_REWR_CONV (GSYM RIGHT_EXISTS_IMP_THM))
|> GEN_ALL
|> CONV_RULE(HO_REWR_CONV SKOLEM_THM))
val tyvars_of_upd_def = zDefine`
tyvars_of_upd upd = mlstring_sort (SET_TO_LIST (set_tyvars_of_upd upd))`
val ALL_DISTINCT_mlstring_sort = store_thm("ALL_DISTINCT_mlstring_sort",
``∀ls. ALL_DISTINCT (mlstring_sort ls)``,
rw[mlstring_sort_def])
val _ = export_rewrites["ALL_DISTINCT_mlstring_sort"]
val ALL_DISTINCT_tyvars_of_upd = store_thm("ALL_DISTINCT_tyvars_of_upd",
``∀upd. ALL_DISTINCT (tyvars_of_upd upd)``,
rw[tyvars_of_upd_def])
val _ = export_rewrites["ALL_DISTINCT_tyvars_of_upd"]
val tyvars_of_TypeDefn = store_thm("tyvars_of_TypeDefn",
``TypeDefn name pred abs rep updates ctxt ∧ is_std_sig (sigof ctxt) ⇒
(tyvars_of_upd (TypeDefn name pred abs rep) = mlstring_sort (tvars pred))``,
strip_tac >> imp_res_tac TypeDefn_constrainable >>
imp_res_tac set_tyvars_of_upd_def >>
pop_assum kall_tac >>
simp[tyvars_of_upd_def] >>
qmatch_abbrev_tac`mlstring_sort l1 = mlstring_sort l2` >>
`ALL_DISTINCT l1 ∧ ALL_DISTINCT l2` by (
unabbrev_all_tac >> simp[] ) >>
simp[mlstring_sort_eq] >>
match_mp_tac sortingTheory.PERM_ALL_DISTINCT >>
simp[] >>
simp[GSYM EXTENSION] >>
unabbrev_all_tac >>
fs[LET_THM] >>
fs[updates_cases] >>
imp_res_tac proves_term_ok >> fs[] >>
fs[Once has_type_cases] >>
imp_res_tac WELLTYPED_LEMMA >>
simp[tyvars_def] >>
simp[SET_EQ_SUBSET] >>
reverse conj_tac >- (
simp[SUBSET_DEF,MEM_FOLDR_LIST_UNION,MEM_MAP,PULL_EXISTS,tyvars_def,
mlstringTheory.implode_explode]) >>
imp_res_tac tyvars_typeof_subset_tvars >> fs[tyvars_def] >>
simp[SUBSET_DEF,MEM_FOLDR_LIST_UNION,MEM_MAP,PULL_EXISTS,tyvars_def,
mlstringTheory.implode_explode] >>
fs[SUBSET_DEF] >> metis_tac[])
val tvars_VSUBST_same_type = store_thm("tvars_VSUBST_same_type",
``∀tm ilist.
welltyped tm ∧
EVERY (λ(x,y). ∃n n' ty. (x = Const n ty ∨ x = Var n' ty) ∧ (y = Var n ty)) ilist ⇒
tvars (VSUBST ilist tm) = tvars tm``,
ho_match_mp_tac term_induction >>
conj_tac >- (
rw[tvars_def,VSUBST_def] >>
rw[REV_ASSOCD_ALOOKUP] >>
BasicProvers.CASE_TAC >> rw[tvars_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[EVERY_MEM,MEM_MAP,EXISTS_PROD] >>
res_tac >> fs[] >> simp[tvars_def] ) >>
conj_tac >- rw[VSUBST_def,tvars_def] >>
conj_tac >- rw[VSUBST_def,tvars_def] >>
rw[] >> fs[] >>
rw[tvars_def] >>
srw_tac[][VSUBST_def] >>
rw[tvars_def,Abbr`z`] >- (
fs[tvars_def] >>
AP_TERM_TAC >>
first_x_assum match_mp_tac >>
simp[Abbr`ilist''`,Abbr`ilist'`,EVERY_FILTER] >>
fs[EVERY_MEM] ) >>
simp[Abbr`t'`] >>
AP_TERM_TAC >>
first_x_assum match_mp_tac >>
simp[Abbr`ilist'`,EVERY_FILTER] >>
fs[EVERY_MEM])
val VFREE_IN_Const_VSUBST = store_thm("VFREE_IN_Const_VSUBST",
``∀tm name ty ilist.
welltyped tm ⇒
VFREE_IN (Const name ty) (VSUBST ilist tm) ⇒
VFREE_IN (Const name ty) tm ∨
∃x xy. VFREE_IN (Var x xy) tm ∧ VFREE_IN (Const name ty) (VSUBST ilist (Var x xy))``,
ho_match_mp_tac term_induction >>
simp[] >>
conj_tac >- simp[VSUBST_def] >>
conj_tac >- (
rw[VSUBST_def] >>
metis_tac[] ) >>
rw[VSUBST_def] >>
fs[LET_THM] >>
pop_assum mp_tac >>
rw[EXISTS_MEM,MEM_FILTER,UNCURRY] >>
fs[VSUBST_def] >>
res_tac >> rw[] >>
fs[REV_ASSOCD,REV_ASSOCD_FILTER] >>
pop_assum mp_tac >> rw[] >> fs[] >>
metis_tac[])
val ConstSpec_constrainable = store_thm("ConstSpec_constrainable",
``ConstSpec eqs prop updates ctxt ∧
EVERY (λ(x,t). set (tyvars (typeof t)) = set (tvars prop)) eqs ⇒
constrainable_update (ConstSpec eqs prop)``,
strip_tac >>
simp[constrainable_update_def,conexts_of_upd_def] >>
`welltyped prop` by (
fs[updates_cases] >>
imp_res_tac proves_term_ok >>
fs[welltyped_def] >> metis_tac[]) >>
conj_tac >- (
rw[LET_THM,EVERY_MAP,UNCURRY,EVERY_MEM,
FORALL_PROD,EXISTS_PROD,MEM_MAP] >>
fs[EVERY_MEM,FORALL_PROD] >>
res_tac >>
pop_assum(SUBST1_TAC) >>
AP_TERM_TAC >>
match_mp_tac tvars_VSUBST_same_type >>
simp[EVERY_MAP,UNCURRY]) >>
simp[MEM_MAP,PULL_EXISTS,EXISTS_PROD] >>
rw[] >>
imp_res_tac VFREE_IN_Const_VSUBST >- (
fs[updates_cases] >>
imp_res_tac proves_term_ok >> fs[] >>
imp_res_tac term_ok_VFREE_IN >>
fs[term_ok_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,EXISTS_PROD,PULL_EXISTS] >>
metis_tac[] ) >>
fs[VSUBST_def,REV_ASSOCD_ALOOKUP] >>
pop_assum mp_tac >>
BasicProvers.CASE_TAC >- (
imp_res_tac ALOOKUP_FAILS >>
fs[MEM_MAP] ) >>
strip_tac >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP,EXISTS_PROD] >> fs[] >> rw[] >>
fs[updates_cases] >>
imp_res_tac ALOOKUP_ALL_DISTINCT_MEM >> fs[])
val tyvars_of_ConstSpec = store_thm("tyvars_of_ConstSpec",
``welltyped prop ∧ constrainable_update (ConstSpec eqs prop) ⇒
tyvars_of_upd (ConstSpec eqs prop) = mlstring_sort (tvars prop)``,
rw[] >> imp_res_tac set_tyvars_of_upd_def >>
pop_assum kall_tac >>
rw[tyvars_of_upd_def] >>
qmatch_abbrev_tac`mlstring_sort l1 = mlstring_sort l2` >>
`ALL_DISTINCT l1 ∧ ALL_DISTINCT l2` by (
unabbrev_all_tac >> simp[] ) >>
simp[mlstring_sort_eq] >>
match_mp_tac sortingTheory.PERM_ALL_DISTINCT >>
simp[] >>
simp[GSYM EXTENSION] >>
unabbrev_all_tac >>
simp[SET_TO_LIST_INV] >>
fs[conexts_of_upd_def,LET_THM] >>
AP_TERM_TAC >>
match_mp_tac tvars_VSUBST_same_type >>
simp[EVERY_MAP,UNCURRY])
val well_formed_constraints_def = xDefine"well_formed_constraints"`
well_formed_constraints0 ^mem upd cs δ ⇔
∀vs tyvs tmvs.
cs vs = SOME (tyvs,tmvs) ⇒
EVERY inhabited vs ∧
LENGTH tyvs = LENGTH (types_of_upd upd) ∧
EVERY inhabited tyvs ∧
LENGTH (tyvars_of_upd upd) = LENGTH vs ∧
∀τ. is_type_valuation τ ∧ MAP τ (tyvars_of_upd upd) = vs ⇒
LIST_REL (λv ty. v <: typesem (constrain_tyass cs upd δ) τ ty)
tmvs (MAP SND (consts_of_upd upd))`
val _ = Parse.overload_on("well_formed_constraints",``well_formed_constraints0 ^mem``)
val well_formed_constraints_implies_lengths = store_thm("well_formed_constraints_implies_lengths",
``is_set_theory ^mem ⇒
well_formed_constraints upd cs δ ⇒
(∀vs tyvs tmvs.
(cs vs = SOME (tyvs,tmvs)) ⇒
(LENGTH tyvs = LENGTH (types_of_upd upd)) ∧
(LENGTH tmvs = LENGTH (consts_of_upd upd)))``,
rw[well_formed_constraints_def] >> res_tac >>
fs[LET_THM] >>
qmatch_assum_abbrev_tac`LENGTH vars = LENGTH args` >>
first_x_assum(qspec_then`args`mp_tac) >> simp[] >>
first_x_assum(qspec_then`K boolset =++ ZIP(vars,args)`mp_tac) >>
impl_tac >- (
match_mp_tac MAP_ZIP_UPDATE_LIST_ALL_DISTINCT_same >>
simp[Abbr`vars`] ) >>
impl_tac >- (
match_mp_tac is_type_valuation_UPDATE_LIST >>
simp[EVERY_MEM,is_type_valuation_def] >>
conj_tac >- metis_tac[setSpecTheory.boolean_in_boolset] >>
simp[MEM_ZIP,PULL_EXISTS] >>
fs[EVERY_MEM,MEM_EL,PULL_EXISTS]) >>
simp[LIST_REL_EL_EQN])
val constrain_interpretation_equal_on = store_thm("constrain_interpretation_equal_on",
``is_set_theory ^mem ⇒
∀upd cs i ctxt.
constrainable_update upd ∧
(∀vs tyvs tmvs.
(cs vs = SOME (tyvs,tmvs)) ⇒
(LENGTH tyvs = LENGTH (types_of_upd upd)) ∧
(LENGTH tmvs = LENGTH (consts_of_upd upd))) ∧
upd updates ctxt ∧ ctxt extends init_ctxt
⇒
equal_on (sigof ctxt) i (constrain_interpretation upd cs i)``,
rw[] >> Cases_on`i` >>
fs[equal_on_def,constrain_interpretation_def] >>
fs[well_formed_constraints_def,constrain_assignment_def] >>
simp[FUN_EQ_THM] >>
`upd::ctxt extends init_ctxt` by (
simp[extends_def,Once relationTheory.RTC_CASES1] >>
simp[GSYM extends_def] ) >>
pop_assum(mp_tac o MATCH_MP extends_ALL_DISTINCT) >>
simp[init_ALL_DISTINCT,ALL_DISTINCT_APPEND] >> strip_tac >>
rw[term_ok_def,type_ok_def] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
imp_res_tac ALOOKUP_MEM >>
Cases_on`x`>>fs[]>>res_tac>>
fs[LET_THM,LIST_REL_EL_EQN] >>
fs[ZIP_MAP,MEM_MAP,PULL_EXISTS,FORALL_PROD] >>
imp_res_tac MEM_ZIP_MEM_MAP >> rfs[] >>
PairCases_on`p`>>fs[] >>rw[]>>
Cases_on`y`>>fs[]>>metis_tac[])
val valid_constraints_def = xDefine"valid_constraints"`
valid_constraints0 ^mem ctxt upd cs i ⇔
EVERY
(λp. constrain_interpretation upd cs i satisfies
(sigof (upd::ctxt), [], p))
(axioms_of_upd upd)`
val _ = Parse.overload_on("valid_constraints",``valid_constraints0 ^mem``)
val constrain_tyass_is_type_assignment = store_thm("constrain_tyass_is_type_assignment",
``∀upd cs δ. is_type_assignment tysig δ ∧
(∀vs tyvs tmvs.
(cs vs = SOME (tyvs,tmvs)) ⇒
EVERY inhabited tyvs ∧
(LENGTH tyvs = LENGTH (types_of_upd upd))) ⇒
is_type_assignment tysig (constrain_tyass cs upd δ)``,
fs[is_type_assignment_def,FEVERY_ALL_FLOOKUP] >> rw[] >>
res_tac >> rw[constrain_assignment_def] >>
BasicProvers.CASE_TAC >> rw[] >>
BasicProvers.CASE_TAC >- metis_tac[] >>
qmatch_assum_rename_tac`cs ls = SOME p`>>
PairCases_on`p`>>res_tac>>
imp_res_tac ALOOKUP_MEM>>
rfs[ZIP_MAP,MEM_MAP] >>
rfs[EVERY_MEM,MEM_ZIP] >>
metis_tac[MEM_EL])
val constrain_tmass_is_term_assignment = store_thm("constrain_tmass_is_term_assignment",
``is_set_theory ^mem ⇒
is_term_assignment (tmsof (upd::ctxt)) δ γ ∧
is_std_type_assignment δ ∧
is_std_type_assignment (constrain_tyass cs upd δ) ∧
constrainable_update upd ∧
well_formed_constraints upd cs δ ∧
upd updates ctxt ∧ ctxt extends init_ctxt
⇒
is_term_assignment (tmsof (upd::ctxt)) (constrain_tyass cs upd δ) (constrain_tmass cs upd γ)``,
strip_tac >> simp[] >> strip_tac >>
`theory_ok (thyof ctxt)` by metis_tac[extends_theory_ok,init_theory_ok] >>
`theory_ok (thyof (upd::ctxt))` by metis_tac[updates_theory_ok] >>
`ALL_DISTINCT (MAP FST (type_list (upd::ctxt))) ∧
ALL_DISTINCT (MAP FST (const_list (upd::ctxt)))` by (
conj_tac >>
imp_res_tac updates_ALL_DISTINCT >>
first_x_assum match_mp_tac >>
imp_res_tac extends_ALL_DISTINCT >>
first_x_assum match_mp_tac >>
EVAL_TAC ) >>
fs[is_term_assignment_def,FEVERY_ALL_FLOOKUP] >> rw[] >>
first_x_assum(fn th => first_assum(strip_assume_tac o MATCH_MP th)) >>
first_x_assum(fn th => first_assum(strip_assume_tac o MATCH_MP th)) >>
rw[constrain_assignment_def] >>
fs[GSYM mlstring_sort_def] >>
reverse BasicProvers.CASE_TAC >- (
fs[well_formed_constraints_def] >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>
first_assum(fn th => first_x_assum(strip_assume_tac o MATCH_MP th)) >>
fs[LET_THM] >>
qpat_x_assum`FLOOKUP X Y = Z`mp_tac >>
simp[FLOOKUP_FUNION] >>
BasicProvers.CASE_TAC >- (
BasicProvers.CASE_TAC >- (
rw[] >>
qmatch_abbrev_tac`m <: typesem d1 τ v` >>
qsuff_tac`typesem d1 τ v = typesem δ τ v` >- rw[] >>
match_mp_tac typesem_sig >>
qexists_tac`tysof ctxt` >>
conj_tac >- (
fs[theory_ok_def] >>
first_x_assum match_mp_tac >>
simp[IN_FRANGE_FLOOKUP] >>
metis_tac[] ) >>
simp[type_ok_def,Abbr`d1`,FUN_EQ_THM] >> rw[] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>
res_tac >> fs[ZIP_MAP] >>
imp_res_tac ALOOKUP_MEM >>
fs[MEM_MAP] >>
imp_res_tac MEM_ZIP_MEM_MAP >>
rfs[] >>
PairCases_on`p`>>fs[ALL_DISTINCT_APPEND,MEM_MAP,PULL_EXISTS,EXISTS_PROD] >>
Cases_on`y`>>fs[]>>
metis_tac[] ) >>
strip_tac >>
imp_res_tac ALOOKUP_MEM >>
qpat_x_assum`∀X. Y`mp_tac >>
qpat_abbrev_tac`vars = mlstring_sort X` >>
disch_then(qspec_then`K boolset =++ ZIP(tyvars_of_upd upd, MAP τ vars)`mp_tac) >>
impl_tac >- (
conj_tac >- (
match_mp_tac is_type_valuation_UPDATE_LIST >>
simp[EVERY_MEM,is_type_valuation_def] >>
conj_tac >- metis_tac[setSpecTheory.boolean_in_boolset] >>
simp[MEM_ZIP,PULL_EXISTS,Abbr`vars`] >>
fs[EVERY_MEM,MEM_EL,PULL_EXISTS]) >>
match_mp_tac MAP_ZIP_UPDATE_LIST_ALL_DISTINCT_same >>
simp[Abbr`vars`] ) >>
strip_tac >> imp_res_tac LIST_REL_LENGTH >>
imp_res_tac MEM_ZIP_MEM_MAP >>
rfs[] >>
fs[MEM_MAP,EXISTS_PROD,ALL_DISTINCT_APPEND,PULL_EXISTS] >>
metis_tac[]) >>
rw[] >>
`tyvars_of_upd upd = mlstring_sort (tyvars v)` by (
simp[tyvars_of_upd_def] >>
imp_res_tac set_tyvars_of_upd_def >>
simp[mlstring_sort_eq,ALL_DISTINCT_SET_TO_LIST] >>
imp_res_tac ALOOKUP_MEM >>
fs[EVERY_MAP,EVERY_MEM] >> res_tac >> fs[] >>
metis_tac[sortingTheory.ALL_DISTINCT_PERM_LIST_TO_SET_TO_LIST,
sortingTheory.PERM_SYM,tyvars_ALL_DISTINCT]) >>
first_x_assum(qspec_then`τ`mp_tac) >>
simp[] >>
strip_tac >> imp_res_tac LIST_REL_LENGTH >>
BasicProvers.CASE_TAC >- (
imp_res_tac ALOOKUP_FAILS >>
imp_res_tac ALOOKUP_MEM >>
rfs[MEM_MAP,ZIP_MAP,EXISTS_PROD] >>
rfs[MEM_ZIP,MEM_EL] >>
metis_tac[] ) >>
imp_res_tac ALOOKUP_MEM >>
rfs[LIST_REL_EL_EQN,MEM_ZIP] >>
first_x_assum(qspec_then`n`mp_tac) >> simp[] >>
fs[ALL_DISTINCT_APPEND] >>
`v = EL n (MAP SND (consts_of_upd upd))` by (
imp_res_tac ALOOKUP_ALL_DISTINCT_EL >> fs[EL_MAP] ) >>
simp[] >>
qmatch_abbrev_tac`m <: x1 ⇒ m <: x2` >>
qsuff_tac`x1 = x2`>-rw[]>>
unabbrev_all_tac >>
match_mp_tac typesem_sig >>
qexists_tac`tysof(upd::ctxt)` >>
simp[FUN_EQ_THM,constrain_assignment_def] >>
fs[theory_ok_def] >>
first_x_assum match_mp_tac >>
simp[IN_FRANGE_FLOOKUP,FLOOKUP_FUNION] >>
qexists_tac`EL n (MAP FST (consts_of_upd upd))` >>
simp[]) >>
Cases_on`type_ok (tysof ctxt) v` >- (
qmatch_abbrev_tac`a <: b` >>
qmatch_assum_abbrev_tac`a <: c` >>
qsuff_tac `b = c` >- rw[] >>
unabbrev_all_tac >>
match_mp_tac typesem_sig >>
first_assum(match_exists_tac o concl) >> simp[] >>
simp[type_ok_def] >> rw[FUN_EQ_THM] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
fs[well_formed_constraints_def,ALL_DISTINCT_APPEND] >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>res_tac>>
imp_res_tac ALOOKUP_MEM >> rfs[MEM_MAP,EXISTS_PROD,ZIP_MAP]>>
imp_res_tac MEM_ZIP_MEM_MAP >> rfs[] >>
metis_tac[]) >>
qpat_x_assum`FLOOKUP X Y = Z`mp_tac >>
simp[FLOOKUP_FUNION] >>
BasicProvers.CASE_TAC >- (
strip_tac >>
fs[theory_ok_def] >>
qsuff_tac`F`>-rw[]>>
qpat_x_assum`¬x`mp_tac >>simp[]>>
first_x_assum match_mp_tac >>
simp[IN_FRANGE_FLOOKUP] >>
metis_tac[] ) >>
rw[] >>
qmatch_abbrev_tac`a <: b` >>
qmatch_assum_abbrev_tac`a <: c` >>
qsuff_tac `b = c` >- rw[] >>
unabbrev_all_tac >>
fs[Once updates_cases] >> rw[] >> fs[] >- (
rpt AP_THM_TAC >> AP_TERM_TAC >> rw[FUN_EQ_THM] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
fs[well_formed_constraints_def] >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>res_tac>>
fs[LENGTH_NIL]) >>
qmatch_abbrev_tac`typesem d1 τ v = typesem δ τ v` >>
`is_std_type_assignment d1 ∧
is_std_type_assignment δ` by (
reverse conj_asm2_tac >- fs[is_std_interpretation_def] >>
simp[Abbr`d1`,GSYM constrain_assignment_def] ) >>
qpat_x_assum`_ = SOME v` mp_tac >>
Q.PAT_ABBREV_TAC`t1 = domain (typeof pred)` >>
Q.PAT_ABBREV_TAC`t2 = Tyapp name X` >>
fs[GSYM mlstring_sort_def] >>
qsuff_tac`k ∈ {abs;rep} ∧ (set (tyvars v) = set (tyvars (Fun t1 t2))) ⇒
(typesem d1 τ t1 = typesem δ τ t1) ∧
(typesem d1 τ t2 = typesem δ τ t2)` >- (
match_mp_tac SWAP_IMP >> strip_tac >>
impl_tac >- (
pop_assum mp_tac >> rw[] >>
simp[tyvars_def] >>
metis_tac[pred_setTheory.UNION_COMM] ) >>
pop_assum mp_tac >>
rw[] >>
qmatch_abbrev_tac`typesem d1 τ (Fun dom rng) = typesem δ τ (Fun dom rng)` >>
qspecl_then[`δ`,`τ`,`dom`,`rng`]mp_tac typesem_Fun >>
qspecl_then[`d1`,`τ`,`dom`,`rng`]mp_tac typesem_Fun >>
simp[] >> rw[]) >>
strip_tac >>
conj_tac >- (
unabbrev_all_tac >>
match_mp_tac typesem_sig >>
qexists_tac`tysof (ctxt)` >>
imp_res_tac proves_term_ok >>
qpat_x_assum`k ∈ X`kall_tac >>
fs[term_ok_def] >>
conj_tac >- (
imp_res_tac term_ok_type_ok >>
fs[theory_ok_def] ) >>
simp[type_ok_def] >> rw[FUN_EQ_THM] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
fs[well_formed_constraints_def] >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>res_tac>>
imp_res_tac ALOOKUP_MEM >> rfs[MEM_MAP,EXISTS_PROD,ZIP_MAP]>>
imp_res_tac MEM_ZIP_MEM_MAP >> rfs[] >>
metis_tac[]) >>
unabbrev_all_tac >>
simp[typesem_def,MAP_MAP_o,combinTheory.o_DEF,ETA_AX] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
qsuff_tac`set (tyvars v) = set (tvars pred)` >- (
qpat_x_assum`set (tyvars v) = X`kall_tac >>
rw[] >>
`mlstring_sort (tvars pred) = mlstring_sort (tyvars v)` by (
`ALL_DISTINCT (tvars pred)` by simp[] >>
`ALL_DISTINCT (tyvars v)` by simp[] >>
simp[mlstring_sort_eq] >>
match_mp_tac sortingTheory.PERM_ALL_DISTINCT >>
fs[pred_setTheory.EXTENSION]) >>
fs[IS_SOME_EXISTS,PULL_EXISTS,LET_THM,MAP_MAP_o,combinTheory.o_DEF]) >>
simp[tyvars_def,pred_setTheory.EXTENSION,
holSyntaxLibTheory.MEM_FOLDR_LIST_UNION,
MEM_MAP,PULL_EXISTS] >>
imp_res_tac proves_term_ok >> fs[term_ok_def] >>
fs[WELLTYPED] >>
imp_res_tac tyvars_typeof_subset_tvars >>
fs[pred_setTheory.SUBSET_DEF,tyvars_def] >>
simp[mlstring_sort_def,MEM_MAP,PULL_EXISTS] >>
metis_tac[mlstringTheory.implode_explode] )
val add_constraints_thm = store_thm("add_constraints_thm",
``is_set_theory ^mem ⇒
∀i upd ctxt cs.
constrainable_update upd ∧
upd updates ctxt ∧ ctxt extends init_ctxt ∧
i models (thyof (upd::ctxt)) ∧
well_formed_constraints upd cs (tyaof i) ∧
valid_constraints ctxt upd cs i
⇒
constrain_interpretation upd cs i models thyof (upd::ctxt)``,
rw[] >> fs[models_def] >>
REWRITE_TAC[CONJ_ASSOC] >>
`theory_ok (thyof ctxt)` by metis_tac[extends_theory_ok,init_theory_ok] >>
`theory_ok (thyof (upd::ctxt))` by metis_tac[updates_theory_ok] >>
`∃δ γ. i =(δ,γ)` by metis_tac[pair_CASES] >>
`ALL_DISTINCT (MAP FST (type_list (upd::ctxt))) ∧
ALL_DISTINCT (MAP FST (const_list (upd::ctxt)))` by (
conj_tac >>
imp_res_tac updates_ALL_DISTINCT >>
first_x_assum match_mp_tac >>
imp_res_tac extends_ALL_DISTINCT >>
first_x_assum match_mp_tac >>
EVAL_TAC ) >>
conj_asm1_tac >- (
conj_asm2_tac >- (
simp[is_interpretation_def] >>
conj_tac >- (
simp[constrain_interpretation_def] >>
match_mp_tac constrain_tyass_is_type_assignment >>
fs[is_interpretation_def] >>
imp_res_tac well_formed_constraints_implies_lengths >>
fs[well_formed_constraints_def] >>
metis_tac[] ) >>
simp[constrain_interpretation_def] >>
match_mp_tac (GEN_ALL(UNDISCH(SIMP_RULE (srw_ss())[]constrain_tmass_is_term_assignment))) >>
simp[] >> fs[is_interpretation_def] >>
fs[is_std_interpretation_def] >>
rfs[constrain_interpretation_def] ) >>
fs[is_interpretation_def,is_std_interpretation_def,constrain_interpretation_def] >>
conj_asm1_tac >- (
fs[is_std_type_assignment_def,constrain_assignment_def] >>
imp_res_tac theory_ok_sig >>
fs[is_std_sig_def,IS_SOME_EXISTS,PULL_EXISTS] >>
imp_res_tac ALOOKUP_MEM >>
rw[] >> fs[ALL_DISTINCT_APPEND] >>
BasicProvers.CASE_TAC >>
res_tac >> fs[] >> rw[] >>
rpt (BasicProvers.CASE_TAC >> res_tac >> fs[]) >>
fs[well_formed_constraints_def] >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>res_tac>>
imp_res_tac ALOOKUP_MEM >> rfs[MEM_MAP,EXISTS_PROD,ZIP_MAP]>>
imp_res_tac MEM_ZIP_MEM_MAP >> rfs[] >>
metis_tac[]) >>
fs[interprets_def,constrain_assignment_def] >> rw[] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
imp_res_tac ALOOKUP_MEM >>
imp_res_tac well_formed_constraints_implies_lengths >>
fs[well_formed_constraints_def] >>
qmatch_assum_rename_tac`cs _ = SOME p`>>
PairCases_on`p`>>res_tac>>
fs[LET_THM] >>
qmatch_assum_abbrev_tac`LENGTH ls = 1` >>
first_x_assum(qspec_then`((HD ls) =+ (τ(strlit"A"))) (K boolset)`mp_tac) >>
impl_tac >- (
Cases_on`ls`>>fs[LENGTH_NIL] >>
simp[is_type_valuation_def,combinTheory.APPLY_UPDATE_THM] >>
rw[] >> metis_tac[setSpecTheory.boolean_in_boolset]) >> strip_tac >>
imp_res_tac LIST_REL_LENGTH >> fs[] >>
imp_res_tac MEM_ZIP_MEM_MAP >> rfs[] >>
imp_res_tac theory_ok_sig >>
fs[is_std_sig_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[ALL_DISTINCT_APPEND,MEM_MAP,PULL_EXISTS,EXISTS_PROD] >>
metis_tac[]) >>
gen_tac >>
qmatch_abbrev_tac`P ⇒ q` >>
strip_tac >> qunabbrev_tac`q` >>
first_x_assum(qspec_then`p`mp_tac) >>
simp[] >> strip_tac >>
Cases_on`MEM p (axiom_list ctxt)` >- (
fs[Abbr`P`] >>
`term_ok (sigof ctxt) p` by (
fs[theory_ok_def]) >>
imp_res_tac theory_ok_sig >>
match_mp_tac satisfies_extend >>
map_every qexists_tac[`tysof ctxt`,`tmsof ctxt`] >>
simp[] >>
REWRITE_TAC[CONJ_ASSOC] >>
conj_asm1_tac >- (
conj_tac >>
match_mp_tac SUBMAP_FUNION >>
disj2_tac >>
fs[ALL_DISTINCT_APPEND,pred_setTheory.IN_DISJOINT] >>
metis_tac[] ) >>
match_mp_tac satisfies_sig >>
qexists_tac`i` >> simp[] >> fs[] >>
conj_tac >- (
match_mp_tac (UNDISCH constrain_interpretation_equal_on) >>
simp[] >>
imp_res_tac well_formed_constraints_implies_lengths >>
metis_tac[]) >>
fs[satisfies_def] >> rw[] >>
qmatch_assum_abbrev_tac`tmsof ctxt ⊑ tmsig` >>
qmatch_assum_abbrev_tac`tysof ctxt ⊑ tysig` >>
first_assum(
mp_tac o MATCH_MP(REWRITE_RULE[GSYM AND_IMP_INTRO](UNDISCH extend_valuation_exists))) >>
first_assum(fn th => disch_then (mp_tac o C MATCH_MP th)) >>
impl_tac >- fs[is_interpretation_def] >> strip_tac >>
first_x_assum(qspec_then`v'`mp_tac) >> simp[] >>
disch_then (SUBST1_TAC o SYM) >>
match_mp_tac EQ_TRANS >>
qexists_tac`termsem (tmsof ctxt) (δ,γ) v' p` >>
conj_tac >- (
match_mp_tac termsem_frees >>
simp[] >>
conj_tac >- (
fs[theory_ok_def] >>
metis_tac[term_ok_welltyped] ) >>
rw[] >>
first_x_assum match_mp_tac >>
imp_res_tac term_ok_VFREE_IN >>
fs[term_ok_def] ) >>
metis_tac[termsem_extend]) >>
fs[valid_constraints_def] >>
fs[markerTheory.Abbrev_def,EVERY_MEM])
val lemma = prove(
``∀i e ty0. ty0 = TYPE_SUBST i ty0 ∧ REV_ASSOCD (Tyvar e) i (Tyvar e) ≠ Tyvar e ∧ MEM e (tyvars ty0) ⇒ F``,
ntac 2 gen_tac >>
ho_match_mp_tac type_ind >>
rw[tyvars_def,MEM_FOLDR_LIST_UNION] >- metis_tac[] >>
fs[EVERY_MEM] >>
fsrw_tac[boolSimps.ETA_ss][] >>
spose_not_then strip_assume_tac >>
res_tac >>
fs[LIST_EQ_REWRITE,EL_MAP] >>
fs[MEM_EL] >>
metis_tac[])
val constrain_interpretation_satisfies = store_thm("constrain_interpretation_satisfies",
``is_set_theory ^mem ⇒
∀j upd ctxt cs.
constrainable_update upd ∧ upd updates ctxt ∧ theory_ok (thyof ctxt) ∧
(axexts_of_upd upd = []) ∧
j models (thyof (upd::ctxt)) ∧
(∀vs. IS_SOME (cs vs) ⇒
LENGTH (FST(THE(cs vs))) = LENGTH (types_of_upd upd) ∧
LENGTH (SND(THE(cs vs))) = LENGTH (consts_of_upd upd)) ∧
EVERY (λx.
(∀vs. IS_SOME (cs vs) ⇒
∀tyval tmval.
is_valuation (tysof (upd::ctxt)) (tyaof (constrain_interpretation upd cs j)) (tyval,tmval) ⇒
MAP tyval (tyvars_of_upd upd) = vs ⇒
termsem (tmsof (upd::ctxt)) (constrain_interpretation upd cs j) (tyval,tmval) x = True))
(axioms_of_upd upd)
⇒
valid_constraints ctxt upd cs j``,
strip_tac >>
rpt gen_tac >>
qabbrev_tac`axs = axioms_of_upd upd` >>
REWRITE_TAC[valid_constraints_def] >>
ASM_SIMP_TAC pure_ss [] >>
qabbrev_tac`sig = sigof(upd::ctxt)` >>
qabbrev_tac`tysig = tysof (upd::ctxt)` >>
qabbrev_tac`tmsig = tmsof (upd::ctxt)` >>
simp[EVERY_MEM,models_def] >> strip_tac >>
rw[] >>
rfs[Abbr`axs`] >>
first_x_assum(fn th => first_assum(strip_assume_tac o MATCH_MP th)) >>
first_x_assum(qspec_then`p`mp_tac) >> simp[] >> strip_tac >>
simp[satisfies_def] >> rw[] >>
`tysof sig = tysig` by simp[Abbr`tysig`,Abbr`sig`] >> fs[] >> pop_assum kall_tac >>
pop_assum mp_tac >> PairCases_on`v`>>simp[is_valuation_def] >> strip_tac >>
`tyvars_of_upd upd = mlstring_sort (tvars p)` by (
simp[tyvars_of_upd_def] >>
qmatch_abbrev_tac`mlstring_sort l1 = mlstring_sort l2` >>
`ALL_DISTINCT l1 ∧ ALL_DISTINCT l2` by (
imp_res_tac set_tyvars_of_upd_def >>
simp[Abbr`l1`,Abbr`l2`] ) >>
simp[mlstring_sort_eq] >>
match_mp_tac sortingTheory.PERM_ALL_DISTINCT >>
simp[GSYM EXTENSION] >>
simp[Abbr`l1`,Abbr`l2`] >>
imp_res_tac set_tyvars_of_upd_def >>
simp[SET_TO_LIST_INV] >>
fs[EVERY_MEM,MEM_MAP,PULL_EXISTS] ) >>
Cases_on`cs (MAP v0 (tyvars_of_upd upd))` >- (
fs[satisfies_def] >>
`∃v2. is_valuation (tysof sig) (tyaof j) (v0,v2)` by (
match_mp_tac (UNDISCH term_valuation_exists) >>
fs[is_interpretation_def] ) >>
qabbrev_tac`v3 = λ(x,ty). if VFREE_IN (Var x ty) p then v1 (x,ty) else v2 (x,ty)` >>
`is_valuation (tysof sig) (tyaof j) (v0,v3)` by (
fs[is_valuation_def] >>
fs[is_term_valuation_def] >> rw[] >>
rw[Abbr`v3`] >>
last_x_assum(qspecl_then[`v`,`ty`]mp_tac) >>
impl_tac >- ( fs[Abbr`tysig`,Abbr`sig`] ) >>
qmatch_abbrev_tac`m <: t1 ⇒ m <: t2` >>
qsuff_tac`t1=t2`>-rw[] >>
map_every qunabbrev_tac[`t1`,`t2`] >>
qmatch_assum_abbrev_tac`cs vs = NONE` >>
match_mp_tac typesem_consts >> rw[] >>
reverse(Cases_on`∃arity. MEM (name,arity) (types_of_upd upd)`)>>fs[]>-(
disj1_tac >>
PairCases_on`j` >>
rw[constrain_interpretation_def,constrain_assignment_def] >>
simp[FUN_EQ_THM] >>
qx_gen_tac`args2` >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
last_x_assum(qspec_then`args2`mp_tac) >>
rw[] >>
imp_res_tac ALOOKUP_MEM >>
rfs[ZIP_MAP,MEM_MAP,EXISTS_PROD] >>
rfs[MEM_ZIP,MEM_EL] >>
metis_tac[] ) >>
disj2_tac >>
imp_res_tac set_tyvars_of_upd_def >>
pop_assum mp_tac >> simp[] >>
disch_then(qspecl_then[`name`,`arity`]mp_tac) >> simp[] >>
strip_tac >>
pop_assum(qspecl_then[`args`,`ty`]mp_tac) >> simp[] >>
impl_tac >- (
disj1_tac >>
imp_res_tac VFREE_IN_types_in >> fs[] >>
simp[MEM_MAP,PULL_EXISTS] >>
metis_tac[] ) >>
rw[] >>
rw[GSYM tyvars_of_upd_def] >>
qexists_tac`mlstring_sort (tvars p)` >>
PairCases_on`j` >>
rw[constrain_interpretation_def] >>
rw[constrain_assignment_def] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
rfs[Abbr`vs`] ) >>
first_x_assum(qspec_then`v0,v3`mp_tac) >> simp[] >>
disch_then(SUBST1_TAC o SYM) >>
match_mp_tac EQ_TRANS >>
qexists_tac`termsem (tmsof sig) (constrain_interpretation upd cs j) (v0,v3) p` >>
`welltyped p ∧ term_ok sig p` by (
imp_res_tac updates_theory_ok >>
fs[theory_ok_def] >>
simp[welltyped_def] >>
metis_tac[] ) >>
conj_tac >- (
match_mp_tac termsem_frees >> simp[] >>
simp[Abbr`v3`] ) >>
match_mp_tac termsem_consts >> simp[] >>
PairCases_on`j` >> simp[constrain_interpretation_def] >>
`∀t. t subterm p ⇒
∀ty. ty subtype (typeof t) ⇒
typesem (constrain_tyass cs upd j0) v0 ty = typesem j0 v0 ty` by (
gen_tac >> strip_tac >>
imp_res_tac set_tyvars_of_upd_def >>
pop_assum mp_tac >> simp[] >> strip_tac >>
ho_match_mp_tac type_ind >>
conj_tac >- simp[typesem_def] >>
qx_gen_tac`args2`>>strip_tac >>
qx_gen_tac`name` >> strip_tac >>
simp[typesem_def] >>
simp_tac (std_ss++boolSimps.ETA_ss)[] >>
`MAP (typesem (constrain_tyass cs upd j0) v0) args2 =
MAP (typesem j0 v0) args2` by (
simp[MAP_EQ_f] >>
fs[EVERY_MEM] >>
qx_gen_tac`ty2`>>strip_tac >>
first_x_assum(qspec_then`ty2`mp_tac) >>
simp[] >>
impl_tac >- (
simp[Once relationTheory.RTC_CASES_RTC_TWICE] >>
qexists_tac`Tyapp name args2` >>
simp[subtype_Tyapp] >>
disj2_tac >>
qexists_tac`ty2` >>
simp[] ) >>
rw[] ) >>
reverse(Cases_on`∃arity. MEM (name,arity) (types_of_upd upd)`)>>fs[]>-(
simp[typesem_def] >>
simp[constrain_assignment_def] >>
BasicProvers.CASE_TAC >>
fs[GSYM constrain_assignment_def] >>
BasicProvers.CASE_TAC >>
imp_res_tac ALOOKUP_MEM >>
qmatch_assum_abbrev_tac`cs vs = SOME x` >>
last_x_assum(qspec_then`vs`mp_tac) >>
simp[] >> strip_tac >>
fs[ZIP_MAP,MEM_MAP,EXISTS_PROD] >>
fs[MEM_ZIP,MEM_EL] >>
metis_tac[] ) >>
simp[typesem_def] >>
simp[Once constrain_assignment_def] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
first_x_assum(qspecl_then[`name`,`arity`]mp_tac) >> simp[] >>
strip_tac >>
qsuff_tac`MAP v0 (tyvars_of_upd upd) = MAP (typesem j0 v0) args2` >- (
metis_tac[optionTheory.NOT_SOME_NONE] ) >>
qspecl_then[`t`,`p`,`name`,`args2`]mp_tac subterm_typeof_types_in >>
simp[] >>
impl_tac >- (
spose_not_then strip_assume_tac >>
imp_res_tac updates_upd_DISJOINT >>
imp_res_tac theory_ok_sig >>
fs[is_std_sig_def] >>
imp_res_tac ALOOKUP_MEM >>
fs[IN_DISJOINT,MEM_MAP,EXISTS_PROD] >>
metis_tac[] ) >>
strip_tac >>
first_x_assum(qspecl_then[`args2`,`ty2`]mp_tac) >> simp[] >>
impl_tac >- (
simp[MEM_MAP,PULL_EXISTS] >>
metis_tac[] ) >>
rw[MAP_MAP_o,combinTheory.o_DEF,typesem_def,ETA_AX] >>
AP_TERM_TAC >>
simp[GSYM mlstring_sort_SET_TO_LIST_set_tvars] >>
AP_TERM_TAC >> AP_TERM_TAC >>
fs[EVERY_MEM,MEM_MAP,EXISTS_PROD,PULL_EXISTS] ) >>
reverse conj_tac >- (
metis_tac[relationTheory.RTC_REFL] ) >>
imp_res_tac set_tyvars_of_upd_def >>
rpt gen_tac >> strip_tac >>
fs[EVERY_MEM] >>
first_x_assum(qspec_then`p`mp_tac) >>
simp[] >> disch_then(qspecl_then[`name`,`ty`]mp_tac) >> simp[] >>
strip_tac >>
imp_res_tac term_ok_VFREE_IN >>
pop_assum mp_tac >>
simp[Abbr`sig`,term_ok_def] >> strip_tac >>
qspecl_then[`tmsig`,`j0,j1`,`name`,`ty`]mp_tac instance_def >>
simp[] >> disch_then kall_tac >>
qspecl_then[`tmsig`,`constrain_interpretation upd cs (j0,j1)`,`name`,`ty`]mp_tac instance_def >>
simp[constrain_interpretation_def] >> disch_then kall_tac >>
simp[GSYM mlstring_sort_def] >>
qhdtm_x_assum`FLOOKUP`mp_tac >>
simp[Abbr`tmsig`,FLOOKUP_FUNION] >>
BasicProvers.CASE_TAC >- (
rw[Once constrain_assignment_def] >>
ntac 2 (
BasicProvers.CASE_TAC >- (
AP_TERM_TAC >>
simp[MAP_EQ_f] >>
simp[mlstring_sort_def,MEM_MAP,PULL_EXISTS,mlstringTheory.implode_explode] >>
rw[] >>
first_x_assum(match_mp_tac o MP_CANON) >>
imp_res_tac VFREE_IN_subterm >>
first_assum(match_exists_tac o concl) >> simp[] >>
ONCE_REWRITE_TAC[GSYM TYPE_SUBST_def] >>
metis_tac[TYPE_SUBST_tyvars_subtype_lemma] )) >>
imp_res_tac ALOOKUP_MEM >>
imp_res_tac ALOOKUP_FAILS >>
qmatch_assum_abbrev_tac`cs vs = SOME x` >>
last_x_assum(qspec_then`vs`mp_tac) >>
simp[] >> strip_tac >>
fs[ZIP_MAP,MEM_MAP,EXISTS_PROD] >>
fs[MEM_ZIP,MEM_EL] >>
metis_tac[] ) >>
rw[] >>
`MAP (typesem (constrain_tyass cs upd j0) v0 o TYPE_SUBST i o Tyvar) (mlstring_sort (tyvars ty0)) =
MAP (typesem j0 v0 o TYPE_SUBST i o Tyvar) (mlstring_sort (tyvars ty0))` by (
simp[MAP_EQ_f] >>
fs[EVERY_MEM] >>
simp[mlstring_sort_def,MEM_MAP,PULL_EXISTS,mlstringTheory.implode_explode] >>
rw[] >>
first_x_assum(match_mp_tac o MP_CANON) >>
imp_res_tac VFREE_IN_subterm >>
first_assum(match_exists_tac o concl) >> simp[] >>
ONCE_REWRITE_TAC[GSYM TYPE_SUBST_def] >>
metis_tac[TYPE_SUBST_tyvars_subtype_lemma] ) >>
rw[Once constrain_assignment_def] >>
BasicProvers.CASE_TAC >>
BasicProvers.CASE_TAC >>
qsuff_tac`MAP v0 (tyvars_of_upd upd) = MAP (typesem j0 v0 o TYPE_SUBST i o Tyvar) (mlstring_sort (tyvars ty0))` >- (
metis_tac[optionTheory.NOT_SOME_NONE] ) >>
`mlstring_sort (tyvars ty0) = tyvars_of_upd upd` by (
fs[MEM_MAP,PULL_EXISTS,EXISTS_PROD] >>
fs[tyvars_of_upd_def] >>
qpat_x_assum`X = mlstring_sort (tvars p)`(mp_tac o SYM) >>