-
Notifications
You must be signed in to change notification settings - Fork 237
/
Copy pathconvert_llama_from_tencentpretrain_to_hf.py
246 lines (211 loc) · 8.54 KB
/
convert_llama_from_tencentpretrain_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import argparse
import gc
import json
import math
import os
import shutil
import torch
from transformers import LlamaConfig, LlamaForCausalLM
"""
Sample usage:
```
python llm_model/scripts/convert_llama_tencentpretrain_to_hf.py \
--tp_model_dir /path/to/downloaded_tencentpretrain_model \
--input_dir /path/to/downloaded/llama/weights \
--model_size 7B \
--model_name chatllama_7b.bin \
--output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import LlamaForCausalLM, LlamaForTokenizer
model = LlamaForCausalLM.from_pretrained("/output/path")
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
INTERMEDIATE_SIZE_MAP = {
"7B": 11008,
"13B": 13824,
"33B": 17920,
"65B": 22016,
}
NUM_SHARDS = {
"7B": 1,
"13B": 2,
"33B": 4,
"65B": 8,
}
def compute_intermediate_size(n):
return int(math.ceil(n * 8 / 3) + 255) // 256 * 256
def read_json(path):
with open(path, "r") as f:
return json.load(f)
def write_json(text, path):
with open(path, "w") as f:
json.dump(text, f)
'''
model_path=args.output_dir,
tp_model_dir=args.tp_model_dir,
tp_model_name=args.tp_model_name,
input_dir=args.input_dir,
model_size=args.model_size,
'''
def write_model(model_path, tp_model_dir=None, tp_model_name=None, input_dir=None, model_size=None):
assert model_path and tp_model_dir and tp_model_name and input_dir and model_size
os.makedirs(model_path, exist_ok=True)
tmp_model_path = os.path.join(model_path, "tmp")
os.makedirs(tmp_model_path, exist_ok=True)
input_base_path = os.path.join(input_dir, model_size)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size]
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
base = 10000.0
inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))
# permute for sliced rotary
def permute(w):
return w.view(n_heads, dim // n_heads // 2, 2, dim).transpose(1, 2).reshape(dim, dim)
print(f"Fetching all parameters from the checkpoint at {input_base_path}.")
# '''
loaded = torch.load(os.path.join(tp_model_dir, tp_model_name+'.bin'))
param_count = 0
index_dict = {"weight_map": {}}
filename = f"pytorch_model-00.bin"
state_dict = {
"model.embed_tokens.weight": loaded[
"embedding.word.embedding.weight"
# "tok_embeddings.weight"
],
"model.norm.weight": loaded[
"encoder.layer_norm.weight"
# "norm.weight"
],
"lm_head.weight": loaded[
"target.lm.output_layer.weight"
# "output.weight"
],
}
for layer_i in range(n_layers):
state_dict.update({
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(loaded[
"encoder.transformer." + str(layer_i) + ".self_attn.linear_layers.0.weight"
# f"layers.{layer_i}.attention.wq.weight"
]),
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(loaded[
"encoder.transformer." + str(layer_i) + ".self_attn.linear_layers.1.weight"
# f"layers.{layer_i}.attention.wk.weight"
]),
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[
"encoder.transformer." + str(layer_i) + ".self_attn.linear_layers.2.weight"
# f"layers.{layer_i}.attention.wv.weight"
],
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[
"encoder.transformer." + str(layer_i) + ".self_attn.final_linear.weight"
# f"layers.{layer_i}.attention.wo.weight"
],
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[
"encoder.transformer." + str(layer_i) + ".feed_forward.linear_gate.weight"
# f"layers.{layer_i}.feed_forward.w1.weight"
],
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[
"encoder.transformer." + str(layer_i) + ".feed_forward.linear_2.weight"
# f"layers.{layer_i}.feed_forward.w2.weight"
],
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[
"encoder.transformer." + str(layer_i) + ".feed_forward.linear_1.weight"
# f"layers.{layer_i}.feed_forward.w3.weight"
],
f"model.layers.{layer_i}.input_layernorm.weight": loaded[
"encoder.transformer." + str(layer_i) + ".layer_norm_1.weight"
# f"layers.{layer_i}.attention_norm.weight"
],
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[
"encoder.transformer." + str(layer_i) + ".layer_norm_2.weight"
# f"layers.{layer_i}.ffn_norm.weight"
],
})
state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freq
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(tmp_model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))
config = LlamaConfig(
hidden_size=dim,
intermediate_size=compute_intermediate_size(dim),
num_attention_heads=params["n_heads"],
num_hidden_layers=params["n_layers"],
rms_norm_eps=params["norm_eps"],
)
config.save_pretrained(tmp_model_path)
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
# '''
print("Loading the checkpoint in a Llama model.")
model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
# Avoid saving this as part of the config.
del model.config._name_or_path
print("Saving in the Transformers format.")
model.save_pretrained(model_path)
shutil.rmtree(tmp_model_path)
def write_tokenizer(tokenizer_path, input_tokenizer_path):
print(f"Fetching the tokenizer from {input_tokenizer_path}.")
os.makedirs(tokenizer_path, exist_ok=True)
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json"))
write_json(
{
"bos_token": "",
"eos_token": "",
"model_max_length": int(1e30),
"tokenizer_class": "LlamaTokenizer",
"unk_token": "",
},
os.path.join(tokenizer_path, "tokenizer_config.json"),
)
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model"))
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--tp_model_dir",
help="Location of tencentpretrain LLaMA weights, which contains model folders",
)
parser.add_argument(
"--tp_model_name",
help="tencentpretrain model name",
)
parser.add_argument(
"--input_dir",
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
choices=["7B", "13B", "33B", "65B", "tokenizer_only"],
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
args = parser.parse_args()
if args.model_size != 'tokenizer_only':
write_model(
model_path=args.output_dir,
tp_model_dir=args.tp_model_dir,
tp_model_name=args.tp_model_name,
input_dir=args.input_dir,
model_size=args.model_size,
)
write_tokenizer(
tokenizer_path=args.output_dir,
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
)
if __name__ == "__main__":
main()