-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
222 lines (185 loc) · 7.67 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# -*- coding: utf-8 -*-
import os
import tensorflow as tf
import numpy as np
import scipy.io
import pdb
import random
import argparse
from settings import gb
from Create_model import *
from Read_data import *
from operator import itemgetter
import sys
def train(mode,load):
with tf.Graph().as_default():
hparam = make_hparam_string(False, False)
sizes, r_field = size_rf_patch(len(gb.convolutions)-1)
print "Image input sizes:", sizes[0], "\tLabel input size:", sizes[1], "\tReceptive field:", r_field
# Create architecture
if load != '1':
# Create placeholders
x = make_placeholders(sizes, 'x')
y = tf.placeholder(tf.float32, shape=[None, None, None, None], name = "y")
x.append(y)
# Create the pathways
outputs = [[] for _ in range(gb.num_paths)]
for pathway in range(gb.num_paths):
path = create_path(x[pathway], str(pathway))
# Upsample layers
if pathway > 0:
factor = gb.downsample[pathway-1]
name = "deconv_" + str(pathway)
path = deconv_layer(path, factor, name)
cvs = len(gb.convolutions) - 1
dif = ((sizes[0][pathway] - 2*cvs)*factor % sizes[1])%2
path = tf.slice(path, [0, dif, dif, dif, 0], tf.shape(outputs[0]))
path.set_shape(outputs[0].get_shape().as_list())
outputs[pathway] = path
# Concatenate the outputs
concatenated = tf.concat(outputs, axis=-1)
# Dense layers
fc_out = dense_block(concatenated)
# Classification layer
last_conv = last_convolution(fc_out, gb.num_classes, "final_conv")
classification = tf.nn.softmax(logits=last_conv, name="softmax")
prediction = tf.argmax(classification, axis=-1)
tf.summary.scalar("Nonzero", tf.count_nonzero(prediction))
# Loss
y_temp = tf.cast(y, tf.int32)
tf.summary.scalar("Nonzero_label", tf.count_nonzero(y_temp))
loss_temp = tf.losses.sparse_softmax_cross_entropy(y_temp, last_conv, weights=weights)
loss = tf.reduce_mean(loss_temp)
tf.summary.scalar("loss", loss)
learning_rate = tf.Variable(gb.learning_rate, name = "learning_rate")
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss, name="optimizer")
# optimizer = tf.train.RMSPropOptimizer(learning_rate, momentum=0.6, epsilon=10e-4).minimize(loss, name="optimizer")
print "----- Architecture Created -----"
accuracy = calculate_accuracy(prediction, y)
tf.summary.scalar("accuracy", accuracy)
with tf.Session() as sess:
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
last = 0 # Epochs until now
# Restore model (if asked)
if load == '1':
ckpt = tf.train.get_checkpoint_state(gb.LOGDIR)
loadpath = ckpt.model_checkpoint_path
saver2 = tf.train.import_meta_graph(loadpath + '.meta')
graph = tf.get_default_graph()
saver2.restore(sess, loadpath)
x = tensor_names(mode)
loss = graph.get_tensor_by_name("Mean:0")
optimizer = graph.get_operation_by_name("optimizer")
accuracy = graph.get_tensor_by_name("truediv:0")
learning_rate = graph.get_tensor_by_name("learning_rate:0")
index = loadpath.find('ckpt-')+5
last = int(loadpath[index:])
print "------------ Model", last, "restored ------------"
saver = tf.train.Saver()
summ = tf.summary.merge_all()
writer = tf.summary.FileWriter(gb.LOGDIR + hparam)
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig()
sess.run(init)
writer.add_graph(sess.graph)
image_list, label_list = get_list(mode)
num_it = (gb.factor*gb.patches_per_patient)/gb.batch_size
count = last*gb.sub_epochs*num_it
num_subepoch = last*gb.sub_epochs
epochs_to_train = gb.num_epochs-last
lista = range(gb.num_cases)
for epoch in range(epochs_to_train):
if last in gb.lr_decay:
times = gb.lr_decay.index(last) + 1
new_lr = gb.learning_rate/(2**times)
reduce_lr = tf.assign(learning_rate, new_lr)
sess.run(reduce_lr)
print "New learning rate:", sess.run(learning_rate)
cases = random.sample(lista, gb.factor)
for subepoch in range(gb.sub_epochs):
num_subepoch += 1
data_subepoch = input_pipeline(itemgetter(*cases)(image_list), itemgetter(*cases)(label_list), sizes, num_subepoch)
acc_total = 0
cost_total = 0
print "----- Starting Epoch", last+1, "- Sub-epoch", subepoch+1, "-----"
for iteration in range(num_it):
data = [[] for _ in range(gb.num_paths+2)]
for i in range(len(data_subepoch)):
data[i] = np.squeeze(data_subepoch[i][:gb.batch_size], 0)
del data_subepoch[i][:gb.batch_size]
summ2, cost, acc, _ = sess.run([summ, loss, accuracy, optimizer],
feed_dict={i: np.squeeze(d) for i, d in zip(x, data)})
acc_total += acc
cost_total += cost
count += 1
writer.add_summary(summ2, count)
print "Iteration:", iteration+1, "\tloss:", cost, "\taccuracy:", acc
print "Metrics sub-epoch:", subepoch+1, "loss:", cost_total/num_it, "accuracy:", acc_total/num_it
last += 1
saver.save(sess, os.path.join(gb.LOGDIR, "model.ckpt"), last)
print "Model", last, "saved."
print('Done training -- epoch limit reached')
saver.save(sess, os.path.join(gb.LOGDIR, "model.ckpt"), last)
sess.close()
print "\n"+"Training complete!"
def test(mode):
with tf.Graph().as_default():
# Set variables
hparam = make_hparam_string(False, False)
sizes = test_sizes_patches()
print "Image input sizes:", sizes[0], "\tLabel input size:", sizes[1]
testpath = '/media/user_home1/ladaza/Docker/data'
outpath = '/media/user_home1/ladaza/Docker/data/results/'
patient_list = os.listdir(testpath)
patient_list.remove('results')
with tf.Session() as sess:
ckpt = tf.train.get_checkpoint_state(gb.LOGDIR)
loadpath = ckpt.model_checkpoint_path
pdb.set_trace()
model_saver = tf.train.import_meta_graph(loadpath + '.meta')
graph = tf.get_default_graph()
model_saver.restore(sess, loadpath)
print "----- Model restored:", loadpath, "-----"
x = tensor_names(test)
output = graph.get_tensor_by_name("ArgMax:0")
min_diff = sizes[1]
for num in patient_list:
modalities = os.listdir(testpath + '/' + num)
image = []
for channel in range(gb.num_ch):
temp = read_image(testpath + '/' + num + '/' + modalities[channel],0)
# NORMALIZATION
temp = (temp-np.mean(temp))/np.std(temp)
image.append(np.pad(temp, min_diff, 'constant', constant_values=(0)))
original = temp.shape
patches = [int(math.ceil(p/float(sizes[1]))) for p in original]
combinations = voxels_test(sizes[1], min_diff, original)
data_test = input_test(image, sizes, patches, combinations)
prob_out = []
count = 0
# Processing and reconstruction of the input image
for iter2 in range(patches[0]):
temporal = []
for iter1 in range(patches[-1]):
data = [[] for _ in range(gb.num_paths+1)]
for i in range(len(data_test)):
data[i] = np.squeeze(data_test[i][:patches[-1]], 0)
del data_test[i][:patches[-1]]
pred1 = sess.run([output], feed_dict={i: d for i, d in zip(x, data)})
pred2 = np.split(pred1, patches[-1])
pred = [np.squeeze(d) for d in pred2]
temporal.append(np.concatenate(pred, axis=2))
im_out.append(np.concatenate(temporal, axis=1))
prediction = np.concatenate(im_out, axis=0)
FinalPred = prediction[:original[0],:original[1],:original[2]]
save_predictions(FinalPred,testpath+'/'+num+'/'+modalities[0], outpath+num+'.nii.gz')
print "Prediction of patient", number, "saved."
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mode', help='train or test')
parser.add_argument('--load', help='1 to restore a trained model')
args = parser.parse_args()
if args.mode == 'train':
train(args.mode, args.load)
else:
test(args.mode)