-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_model.py
56 lines (47 loc) · 2.67 KB
/
create_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import tensorflow as tf
from tensorflow import keras
# Define Custom layer
class MyDenseLayer(tf.keras.layers.Layer):
def __init__(self, num_outputs):
super(MyDenseLayer, self).__init__()
self.num_outputs = num_outputs
def build(self, input_shape):
self.kernel = self.add_weight("kernel",
shape=[input_shape[-1][-1],
self.num_outputs])
def call(self, input):
return tf.matmul(input, self.kernel)
def build_model(input_image_encoding_size, input_text_encoding_size, num_classes):
'''
Input arguments: input_image_encoding_size - dimention of the encoded images
input_text_encoding_size - dimention of encoded text
num_classes - number of classes
Outputs: Model with classification layer
'''
# image tower
encoded_image_input = keras.Input(
shape=(input_image_encoding_size)) # Define input layer
# Define first hidden layer and point the input layer to hidden layer
hlayer1 = keras.layers.Dense(512, activation='relu')(encoded_image_input)
# Define drop out layer and point first hidden layer to dropout layer
dlayer1 = keras.layers.Dropout(0.15)(hlayer1)
hlayer2 = keras.layers.Dense(512, activation='relu')(dlayer1)
dlayer2 = keras.layers.Dropout(0.15)(hlayer2)
hlayer3 = keras.layers.Dense(512, activation='relu')(dlayer2)
dlayer3 = keras.layers.Dropout(0.15)(hlayer3)
hlayer4 = keras.layers.Dense(512, activation='relu')(dlayer3)
dlayer4 = keras.layers.Dropout(0.15)(hlayer4)
hlayer5 = keras.layers.Dense(512, activation='relu', kernel_regularizer=keras.regularizers.l2(
0.01), name='image_universal_embedding_output_layer')(dlayer4)
# text tower
encoded_text_input = keras.Input(shape=(input_text_encoding_size))
thlayer1 = keras.layers.Dense(512, activation='relu')(encoded_text_input)
tdlayer1 = keras.layers.Dropout(0.15)(thlayer1)
thlayer2 = keras.layers.Dense(512, activation='relu', kernel_regularizer=keras.regularizers.l2(
0.01), name='text_universal_embedding_output_layer')(tdlayer1)
# Creates the hidden layer and points the 5th hidden layer of imagetower and 2nd hidden layer of texttower to it.
shared_hidden_layer = MyDenseLayer(num_classes)([hlayer5, thlayer2])
softmax_output_layer = tf.keras.layers.Softmax()(shared_hidden_layer)
complete_model = keras.Model(inputs=[encoded_image_input, encoded_text_input], outputs=[
softmax_output_layer, hlayer5, thlayer2]) # completes the model and assigns inputs and outputs
return complete_model