-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGUI.py
514 lines (401 loc) · 16.4 KB
/
GUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import sys
from PyQt5.QtWidgets import QWidget, QFileDialog, QCheckBox, QHBoxLayout, QDesktopWidget, QApplication, QMessageBox, QPushButton, QLabel, QProgressBar, QTextEdit, QVBoxLayout
from PyQt5.QtGui import QPixmap
from PyQt5.QtCore import QCoreApplication, pyqtSignal
from PyQt5.QtCore import QThread, Qt
from PyQt5 import QtGui
from PyQt5.QtWidgets import QMainWindow, QApplication
#import design
import os
import sip
import PyQt5
import numpy as np
from sklearn.externals import joblib
from PIL import Image
import webbrowser
from tqdm import tqdm
import unittest
class netLearningThread(QThread):
'''
Class used to train the net in separate thread
'''
transitional_pic = pyqtSignal(QPixmap)
idol_pic = pyqtSignal(QPixmap)
progress = pyqtSignal(int)
saver = pyqtSignal(str)
def __init__(self, savepath, loadpath, n_epoch=2):
QThread.__init__(self)
self.savename = savepath
self.n_epoch = n_epoch
self.loadpath = loadpath
def __del__(self):
self.wait()
def showpic(self, digit, multiplier=70, size=200, shape=(8, 8)):
'''
Converts np.array into Qpixmap. Whith desired resizing and multiplying
:param digit: np.array(image), must be broadcastable to shape shape
:param multiplier: param to be multiplied with digit (brightness correction)
:param size: digit will be resized to (size,size)
:param shape: digit must be broadcastable to shape shape
:return: Qpixmap
'''
tstimage1 = Image.fromarray(digit.reshape(shape) * multiplier)
tstimage1 = tstimage1.convert('L')
tstimage1 = tstimage1.resize((size, size))
qPix = tstimage1.toqpixmap()
#data = tstimage1.toString('raw', 'RGBA')
#qIm = QtGui.QImage(data, tstimage1.size[0], tstimage1.size[1], QtGui.QImage.Format_ARGB32)
return qPix
# tstimage1.show()
def train_net(self, n_epoch=500):
'''
The whole training done here. Defines the net. Loads data. Trains the net.
Rewrites net weights into file each epoch.
:param usesaved: Whether to use precomputed weights from file
:param n_epoch: Number of epochs to learn
:return:
'''
from keras.models import Model, Sequential
from keras.layers import Flatten, Dropout, Dense, Input, merge
from sklearn.datasets import load_digits
# DATA
X, y = load_digits(n_class=1, return_X_y=True)
# showpic(X[0])
# MODEL
gen_input = Input(shape=(64,))
orig_input = Input(shape=(64,))
generator = Dense(64, activation='sigmoid')
# generator2 = Dense(64,activation = 'sigmoid')
# gen_out1 = generator(gen_input)
gen_out = generator(gen_input)
merged_vector = merge([orig_input, gen_out], mode='sum', output_shape=(64,))
predictions = Dense(1, activation='sigmoid')(merged_vector)
model = Model(input=[gen_input, orig_input], output=predictions)
from theano.tensor import basic as tensor, subtensor
def generator_error_theano(y_true, y_pred):
'''
TODO write normalisation
'''
return -tensor.log(1.0 - y_pred) # -(target * tensor.log(output) + (1.0 - target) *
# return -tensor.log(1.0 + (y_pred-1.0))
def tester_error_theano(target, output):
'''
y_true = 0 -> it was real
'''
return -((target) * tensor.log(output) + (1.0 - target) * tensor.log(1.0 - output))
npx = np.array(X)
bottom = np.array(X).min()
top = np.array(X).max()
X = X / top
top = np.array(X).max()
idol = self.showpic(X[np.random.choice(len(X))])
self.idol_pic.emit(idol)
generator_layers = 1
tester_train_steps = 1
# n_epoch = 500
xnum = 0
#self.saver.connect(joblib.dump(model.get_weights(),"qwe.pkl"))
from keras.optimizers import SGD
opt = SGD(lr=0.0001)
import theano
get_activations = theano.function([model.layers[0].input], model.layers[1].output, allow_input_downcast=True)
# LOAD WEIGHTS
if self.loadpath:
model.set_weights(joblib.load(self.loadpath))
# TRAINING LOOP
for epoch in range(0, n_epoch):
print("Epoch ", epoch) # ,"Iter ",xnum)
joblib.dump(model.get_weights(), self.savename, compress=9)
for xnum in range(0, len(X)):
# unfreezing tester
model.layers[-1].trainable = True
# freezing generator
for i in range(1, 1 + generator_layers + 1):
model.layers[i].trainable = False
model.compile(opt, loss=tester_error_theano)
# doing tester_train_steps of tester training
for k in range(0, tester_train_steps):
# for xnum in range(0,len(X)):
model.train_on_batch([np.zeros((64,)).reshape((-1, 64)), np.array(X[xnum]).reshape((-1, 64))],
np.array([0.0])) # inputs original image
model.train_on_batch(
[np.random.uniform(bottom, top, 64).reshape((-1, 64)), np.zeros((64,)).reshape((-1, 64))],
np.array([1.0])) # inputs noise to generator
# Unfreezing generator
for i in range(1, 1 + generator_layers + 1):
model.layers[i].trainable = True
# freezing tester
model.layers[-1].trainable = False
model.compile(opt, loss=generator_error_theano)
# doing ? steps of generator training
for nn in range(0, 3):
model.train_on_batch(
[np.random.uniform(bottom, top, 64).reshape((-1, 64)), np.zeros((64,)).reshape((-1, 64))],
np.array([1.0])) # inputs noise to generator
if xnum % 10 == 0: #len(X) - 1:
tst = np.random.uniform(bottom, top, 64).reshape((-1, 64))
Generated = get_activations(tst)
pixmap = self.showpic(Generated) # Image.fromarray(Generated.astype(np.uint8))
# pixmap = QPixmap.fromImage(im)
self.transitional_pic.emit(pixmap)
# showpic(Generated, size=500, multiplier=70)
self.progress.emit(epoch)
return 1# "'{title}' by {author} in {subreddit}".format(**top_post)
def run(self):
'''
Default method. Everything in thread runs from here.
:return:
'''
self.train_net(self.n_epoch)
class Example(QWidget,QThread):
'''
Main window class. Contains all widgets and communicates with
net training thread
'''
def __init__(self):
super().__init__()
self.setWindowTitle("GAN workflow visualizer")
self.initUI()
def runtrain(self):
'''
Creates net training thread and runs.
:return:
'''
n_epoch = 200
# usesaved = self.savebox.isChecked()
# savepath = self.saveedit.toPlainText()
self.get_thread = netLearningThread(self.savep[0],self.loadp[0], n_epoch)
self.get_thread.transitional_pic.connect(
self.writeSmth) # self.get_thread, SIGNAL('transitional_pic(Qmatrix?)'),
self.get_thread.idol_pic.connect(
self.show_idol)
self.pbar.setMaximum(n_epoch-1)
self.get_thread.progress.connect(self.pbar.setValue)
self.get_thread.start()
def show_idol(self, Smth):
'''
Draws the picture of desired result.
:param Smth: Desired result (Qpixmap)
:return:
'''
# self.label.setText("GotSmth")
# pixmap = QPixmap(os.getcwd() + '/cutted.jpg')
myScaledPixmap = Smth.scaled(self.label_idol.size(), Qt.KeepAspectRatio)
self.label_idol.setPixmap(myScaledPixmap)
# def saveme(self):
#
# self.aa = QVBoxLayout()
# self.savefield = QTextEdit()
# self.okbtn = QPushButton('OK', self)
# #self.savefield.show()
# self.aa.addWidget(self.okbtn)
# self.aa.addWidget(self.savefield)
# self.label111 = QLabel()
# self.label111.setLayout(self.aa)
# self.label111.show()
# self.okbtn.clicked.connect(self.emitsave)
# def emitsave(self):
# path = self.savefield.toPlainText()
# self.get_thread.saver.emit(str(path))
#QTextEdit.keyPressEvent()
def helpopen(self):
'''
opens helpfile in browser
:return:
'''
webbrowser.open("/home/aanax/Desktop/GAN/gui/_build/html/index.html")
def savepath(self):
'''
Allows user to choose where to save the model via FileDialog
'''
self.savep = QFileDialog.getSaveFileName(filter="*.pkl")
self.saveedit.setText("Saving to " + str(self.savep[0]) + "\n\n" + "Loading from " + str(self.loadp[0]))
def loadpath(self):
'''
Allows user to choose where to save the model via FileDialog
'''
self.loadp = QFileDialog.getOpenFileName(filter="*.pkl") #OpenFileName(filter="*.pkl")
self.saveedit.setText("Saving to "+str(self.savep[0])+"\n\n"+"Loading from "+str(self.loadp[0]))
def initUI(self):
'''
Creates widgets.
'''
self.setGeometry(1300, 300, 400, 400)
self.setWindowTitle('Message box')
self.savep = ["Default.pkl"]
self.loadp = ["Default.pkl"]
OneVert = QVBoxLayout()
TwoVert = QVBoxLayout()
SaveHor = QVBoxLayout()
BigHor = QHBoxLayout(self)
qbtn = QPushButton('Start', self)
qbtn.clicked.connect(self.runtrain)
qbtn.setMaximumWidth(200)
l = QPushButton("Load from ...",self)
s = QPushButton("Save to ...",self)
l.setMaximumWidth(200)
s.setMaximumWidth(200)
s.clicked.connect(self.savepath)
l.clicked.connect(self.loadpath)
#qbtn.clicked.connect(self.runtrain)
# qbtn.resize(qbtn.sizeHint())
#qbtn.move(50, 50)
# savebtn = QPushButton('save', self)
# savebtn.clicked.connect(self.saveme)
# savebtn.move(200, 50)
helpbtn = QPushButton("Help",self)
helpbtn.clicked.connect(self.helpopen)
helpbtn.setMaximumWidth(200)
#self.savebox = QCheckBox(self)
#self.savebox.setText("UseSaved")
self.label = QLabel("LABEL",self)
#self.label.move(100,100)
self.label.resize(200, 200)
self.label_idol = QLabel("LABEL_IDOL", self)
#self.label_idol.move(500, 100)
self.label_idol.resize(200, 200)
self.pbar = QProgressBar(self)
self.pbar.setGeometry(200, 80, 250, 20)
self.pbar.setMaximumWidth(200)
#self.pbar.move(300,420)
# pixmap = QPixmap(os.getcwd() + '/cutted.jpg')
# self.label.setPixmap(pixmap)
self.saveedit = QTextEdit("Save/load path", self)
self.saveedit.setMaximumWidth(200)
self.saveedit.setMaximumHeight(200)
self.saveedit.setReadOnly(True)
#OneVert.setGeometry( 0,0,500,500)
OneVert.addWidget(qbtn)
OneVert.addWidget(s)
OneVert.addWidget(l)
#OneVert.addWidget(self.savebox)
OneVert.setAlignment(qbtn, Qt.AlignTop)
#SaveHor.addWidget(self.savebox)
SaveHor.addWidget(self.saveedit)
OneVert.addLayout(SaveHor)
OneVert.setAlignment(SaveHor, Qt.AlignTop)
OneVert.addWidget(self.pbar)
OneVert.setAlignment(self.pbar, Qt.AlignTop)
OneVert.addWidget(helpbtn)
#OneVert.setAlignment(OneVert.widget(), Qt.AlignTop)
TwoVert.addWidget(self.label)
TwoVert.addWidget(self.label_idol)
BigHor.addLayout(OneVert)
BigHor.addLayout(TwoVert)
self.setLayout(BigHor)
self.show()
def writeSmth(self, Smth):
'''
Updates the pic of current progress.
:param Smth: pic of current progress (Qpixmap)
'''
# self.label.setText("GotSmth")
# pixmap = QPixmap(os.getcwd() + '/cutted.jpg')
myScaledPixmap = Smth.scaled(self.label.size(), Qt.KeepAspectRatio)
self.label.setPixmap(myScaledPixmap)
def closeEvent(self, event):
sip.delete(self)
# reply = QMessageBox.question(self, 'Message',
# "Are you sure to quit?", QMessageBox.Yes |
# QMessageBox.No, QMessageBox.No)
# if reply == QMessageBox.Yes:
# event.accept()
# else:
# event.accept()
if __name__ == '__main__':
app = QApplication(sys.argv) # sys.argv,
def tst_showpic(digit, multiplier=400.0, size=200, shape=(8, 8)):
'''
Copy of showpic function (for test).
'''
if (shape[0] == 0) or (shape[1] == 0):
# print("Zero shape passed")
return 0
tstimage1 = Image.fromarray(digit.reshape(shape) * float(multiplier))
tstimage1 = tstimage1.convert('L')
tstimage1 = tstimage1.resize((size, size))
qPix = tstimage1 # .toqpixmap()
# data = tstimage1.toString('raw', 'RGBA')
# qIm = QtGui.QImage(data, tstimage1.size[0], tstimage1.size[1], QtGui.QImage.Format_ARGB32)
return qPix
def test_showpic(start=0, stop=10, mstart=0, mstop=50):
'''
Tests showpic function.
'''
# 400
# 200
print("Testing showpic. n from ",start," to ",stop," Mult from ",mstart," to ",mstop)
for n in tqdm(range(start, stop)):
for mult in np.linspace(mstart, mstop, (mstop - mstart) * 1000):
shape = (n, n)
size = n
X = np.zeros(shape)
if n != 0:
posx = np.random.randint(low=0, high=n)
posy = np.random.randint(low=0, high=n)
X[posx][posy] = 1.0
res = tst_showpic(X, multiplier=mult, size=size, shape=shape)
if n == 0:
assert res == 0, ("Passed size 0 Wanted 0 Got", res, "n=", n, "mult=", mult)
else:
assert np.array_equal((X * mult).astype(int).nonzero(), np.array(res).nonzero()), (
"Wanted", (X * mult).astype(int).nonzero(), "Got", np.array(res).nonzero(), "n=", n, "mult=", mult)
#print("All tests gone okay ( n in range", start, "-", stop, "mult in range", mstart, "-", mstop)
print("Showpic function test - OK")
class SimpleWidgetTestCase(unittest.TestCase):
'''
Class for testing gui.
'''
def setUp(self):
'''
Creates widgets to test.
'''
self.widget = Example()
def test_default_widget_size(self):
'''
Tests main window default size.
'''
self.assertEqual(self.widget.size(), PyQt5.QtCore.QSize(400, 400),
'incorrect default size')
print("Default size - OK")
def test_children(self):
'''
Tests whether all widgets was spawned.
:return:
'''
self.assertEqual(len(self.widget.children()), 9 , "Incorrect number of widgents created")
print("Widgets creation - OK")
def test_threading_ability(self):
'''
Tests whether users computer supports multithreading.
:return:
'''
self.assertGreater(self.widget.thread().idealThreadCount(), 2,
"Cant run two threads or the number of processor cores could not be detected.")
print("Threading ability - OK")
def tearDown(self):
'''
Closes widget that was opened for testing.
:return:
'''
#del self.widget
#self.widget.hide()
#self.widget.destroy()
#self.widget.close()
#sip.delete(self.widget)
#self.widget = None
self.widget.close()
#self.widget.deleteLater()
#self.widget.closeEvent()
#self.widget.destroy() #dispose()
tester=SimpleWidgetTestCase()
tester.setUp()
tester.test_default_widget_size()
tester.test_children()
tester.test_threading_ability()
tester.tearDown()
#del tester
#test_showpic()
ex = Example()
ex.setWindowTitle("GAN workflow visualizer")
sys.exit(app.exec_())